Problem Set 3

DUE: To Shanshan's office on Friday, Feb. 1 at 1 pm.

- 1. Let A and B both be $n \times n$ matrices. What's wrong with the formula $(A + B)^2 = A^2 + 2AB + B^2$? Prove that if this formula is true for A and B, then A and B commute.
- 2. Which of the following subsets of \mathbb{R}^2 are actually subspaces? Explain.
 - a) $\{(x, y) \mid xy = 0\}$
 - b) $\{(x, y) \mid x \text{ and } y \text{ are both integers}\}$
 - c) $\{(x,y) \mid x+y=0\}$
 - d) $\{(x, y) \mid x + y = 2\}$
 - e) $\{(x,y) \mid x+y \ge 0\}$
- 3. Let V and W be linear spaces and $T: V \to W$ a linear map.
 - a) Assume the kernel of T is trivial, that is, the only solution of the homogeneous equation $T\vec{x} = 0$ is $\vec{x} = 0$. Prove that if $T(\vec{x}) = T(\vec{y})$, then $\vec{x} = \vec{y}$.
 - b) Conversely, if T has the property that "if $T(\vec{x}) = T(\vec{y})$, then $\vec{x} = \vec{y}$," show that the kernel of T is trivial.
- 4. Say $\vec{v}_1, \ldots, \vec{v}_n$ are linearly independent vectors in \mathbb{R}^n and $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear map.
 - a) Show by an example, say for n = 2, that $T\vec{v}_1, \ldots, T\vec{v}_n$ need not be linearly independent.
 - b) However, show that if the kernel of T is trivial, then these vectors $T\vec{v}_1, \ldots, T\vec{v}_n$ are linearly independent.
- 5. Let $A : \mathbb{R}^3 \to \mathbb{R}^5$ and $B : \mathbb{R}^5 \to \mathbb{R}^2$.
 - a) What are the maximum and minimum values for the dimension of the kernels of A, B, and BA?
 - b) What are the maximum and minimum values for the dimension of the images of A, B, and BA?
- 6. [BRETSCHER, SEC. 2.4 #52]. Let $A := \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 3 & 6 \\ 1 & 4 & 8 \end{pmatrix}$. Find a vector \vec{b} in \mathbb{R}^4 such that

the system $A\vec{x} = \vec{b}$ is inconsistent, that is, it has no solution.

- 7. Find a real 2×2 matrix A (with $A^2 \neq I$ and $A^3 \neq I$) so that $A^6 = I$. For your example, is A^4 invertible?
- 8. Let A, B, and C be $n \times n$ matrices with A and C invertible. Solve the equation ABC = I A for B.
- 9. If a square matrix M has the property that $M^4 M^2 + 2M I = 0$, show that M is invertible. [SUGGESTION: . Find a matrix N so that MN = I. This is very short.]
- 10. Linear maps F(X) = AX, where A is a matrix, have the property that F(0) = A0 = 0, so they necessarily leave the origin fixed. It is simple to extend this to include a translation,

$$F(X) = V + AX,$$

where V is a vector. Note that F(0) = V.

Find the vector V and the matrix A that describe each of the following mappings [here the light blue F is mapped to the dark red F].

- 11. Let $\vec{e_1} = (1, 0, 0, \dots, 0) \in \mathbb{R}^n$ and let \vec{v} and \vec{w} be any non-zero vectors in \mathbb{R}^n .
 - a) Show there is an invertible matrix B with $B\vec{e_1} = \vec{v}$.
 - b) Show there is an invertible matrix M with $M\vec{w} = \vec{v}$.
- 12. [LIKE BRETSCHER, SEC. 2.4 #40]. Let A be a matrix, not necessarily square.
 - a) If A has two equal rows, show that it is not onto (and hence not invertible).
 - b) If A has two equal columns, show that it is not one-to-one (and hence not invertible).

[Last revised: January 26, 2013]