Problem Set 3

Due: To Shanshan's office on Friday, Feb. 1 at 1 pm.

1. Let A and B both be $n \times n$ matrices. What's wrong with the formula $(A+B)^{2}=$ $A^{2}+2 A B+B^{2}$? Prove that if this formula is true for A and B, then A and B commute.
2. Which of the following subsets of \mathbb{R}^{2} are actually subspaces? Explain.
a) $\{(x, y) \mid x y=0\}$
b) $\{(x, y) \mid x$ and y are both integers $\}$
c) $\{(x, y) \mid x+y=0\}$
d) $\{(x, y) \mid x+y=2\}$
e) $\{(x, y) \mid x+y \geq 0\}$
3. Let V and W be linear spaces and $T: V \rightarrow W$ a linear map.
a) Assume the kernel of T is trivial, that is, the only solution of the homogeneous equation $T \vec{x}=0$ is $\vec{x}=0$. Prove that if $T(\vec{x})=T(\vec{y})$, then $\vec{x}=\vec{y}$.
b) Conversely, if T has the property that "if $T(\vec{x})=T(\vec{y})$, then $\vec{x}=\vec{y}$," show that the kernel of T is trivial.
4. Say $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent vectors in \mathbb{R}^{n} and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear map.
a) Show by an example, say for $n=2$, that $T \vec{v}_{1}, \ldots, T \vec{v}_{n}$ need not be linearly independent.
b) However, show that if the kernel of T is trivial, then these vectors $T \vec{v}_{1}, \ldots, T \vec{v}_{n}$ are linearly independent.
5. Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ and $B: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$.
a) What are the maximum and minimum values for the dimension of the kernels of A, B, and $B A$?
b) What are the maximum and minimum values for the dimension of the images of A, B, and $B A$?
6. [Bretscher, Sec. 2.4 \#52]. Let $A:=\left(\begin{array}{lll}0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 3 & 6 \\ 1 & 4 & 8\end{array}\right)$. Find a vector \vec{b} in \mathbb{R}^{4} such that the system $A \vec{x}=\vec{b}$ is inconsistent, that is, it has no solution.
7. Find a real 2×2 matrix A (with $A^{2} \neq I$ and $A^{3} \neq I$) so that $A^{6}=I$. For your example, is A^{4} invertible?
8. Let A, B, and C be $n \times n$ matrices with A and C invertible. Solve the equation $A B C=I-A$ for B.
9. If a square matrix M has the property that $M^{4}-M^{2}+2 M-I=0$, show that M is invertible. [Suggestion: . Find a matrix N so that $M N=I$. This is very short.]
10. Linear maps $F(X)=A X$, where A is a matrix, have the property that $F(0)=A 0=0$, so they necessarily leave the origin fixed. It is simple to extend this to include a translation,

$$
F(X)=V+A X
$$

where V is a vector. Note that $F(0)=V$.
Find the vector V and the matrix A that describe each of the following mappings [here the light blue F is mapped to the dark red F].

a).
b).

c).

11. Let $\vec{e}_{1}=(1,0,0, \ldots, 0) \in \mathbb{R}^{n}$ and let \vec{v} and \vec{w} be any non-zero vectors in \mathbb{R}^{n}.
a) Show there is an invertible matrix B with $B \vec{e}_{1}=\vec{v}$.
b) Show there is an invertible matrix M with $M \vec{w}=\vec{v}$.
12. [Like Bretscher, Sec. $2.4 \# 40$]. Let A be a matrix, not necessarily square.
a) If A has two equal rows, show that it is not onto (and hence not invertible).
b) If A has two equal columns, show that it is not one-to-one (and hence not invertible).
[Last revised: January 26, 2013]

