Problem Set 4

Due: To Shanshan's mailbox in the math office, 1 p.m., Feb. 8.

Reminder: Exam 1 is on Wednesday, Feb. 13, 11:00-11:50. No books or calculators but you may always use one $3'' \times 5''$ card with handwritten notes on both sides.

- 1. Let A be a square matrix. If A^2 is invertible, show that A is invertible.
- 2. Find a linear map $L: \mathbb{R}^3 \to \mathbb{R}^3$ whose kernel is exactly the plane

$$\{(x_1, x_2, x_3) \subset \mathbb{R}^3 \mid x_1 + 2x_2 - x_3 = 0\}.$$

3. In class we considered the interpolation problem of finding a polynomial of degree n passing through n+1 specified distinct points in the plane. To be definite, take n=3, and say we want to find a polynomial ϕ which passes through (a_1,b_1) , (a_2,b_2) , (a_3,b_3) , and (a_4,b_4) , with $a_i \neq a_{i'}$ if $i \neq i'$. The point of this problem is to see vividly why choosing a basis adapted to the problem may involve much less work. Recall that \mathcal{P}_n is the vector space of polynomials of degree $\leq n$. Let

$$ev_{a_i}: \mathcal{P}_3 \to \mathbb{R}$$

be the element of \mathcal{P}_3^* given by

$$\operatorname{ev}_{a_i}(f(x)) = f(a_i).$$

- a) Prove that $B = \{ev_{a_1}, ev_{a_2}, ev_{a_3}, ev_{a_4}\}$ is a basis of \mathcal{P}_3^* .
- b) Compute the dual basis $B^* = \{\beta_1, \beta_2, \beta_3, \beta_4\} \subset \mathcal{P}_3^{**} = \mathcal{P}_3$ of B.
- c) What is a polynomial ϕ whose graph passes through the points (a_i, b_i) , as a linear combination of the β_i ?
- d) Why is there exactly one such ϕ ?

This basis $\{\beta_i\}$ is called the **Lagrange basis** for this interpolation problem.

- 4. [Bretscher, Sec. 2.4 #35] An $n \times n$ matrix A is called *upper triangular* if all the elements below the *main diagonal*, a_{11} a_{22} , ... a_{nn} are zero, that is, if i > j then $a_{ij} = 0$.
 - a) Let $V_i \subseteq \mathbb{R}^n$ be the span of $\{e_1, \ldots, e_i\}$. Prove (using induction) that a matrix A is upper triangular if and only if $A(V_i) \subseteq V_i$. That is, Ae_1 is a multiple of e_1 ; Ae_2 is a linear combination of e_1 and e_2 ; et cetera.

b) Let A be the upper triangular matrix

$$A = \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}.$$

For which values of a, b, c, d, e, f is A invertible? Hint: Write out the equations AX = Y explicitly.

- c) If A is invertible, is its inverse also upper triangular?
- d) Show that the product of two $n \times n$ upper triangular matrices is also upper triangular.
- e) Show that an upper triangular $n \times n$ matrix is invertible if none of the elements on the main diagonal are zero.
- f) Conversely, if an upper triangular $n \times n$ matrix is invertible show that none of the elements on the main diagonal can be zero.
- 5. [SEE BRETSCHER, SEC. 3.2 #6] Let U and V both be two-dimensional subspaces of \mathbb{R}^5 , and let $W = U \cap V$. Find all possible values for the dimension of W.
- 6. [SEE BRETSCHER, SEC. 3.2 #50] Let U and V both be two-dimensional subspaces of \mathbb{R}^5 , and define the set W := U + V as the set of all vectors w = u + v where $u \in U$ and $v \in V$ can be any vectors.
 - a) Show that W is a linear space.
 - b) Find all possible values for the dimension of W.
- 7. Say you have k linear algebraic equations in n variables; in matrix form we write $A\vec{x} = \vec{y}$. Give a proof or counterexample for each of the following.
 - a) If n = k there is always at most one solution.
 - b) If n > k you can always solve $A\vec{x} = \vec{y}$.
 - c) If n > k the nullspace (= kernel) of A has dimension greater than zero.
 - d) If n < k then for some \vec{y} there is no solution of $A\vec{x} = \vec{y}$.
 - e) If n < k the only solution of $A\vec{x} = 0$ is $\vec{x} = 0$.
- 8. [Bretscher, Sec. 3.3 #30] Find a basis for the subspace of \mathbb{R}^4 defined by the equation $2x_1 x_2 + 2x_3 + 4x_4 = 0$.
- 9. Let V the vector space of $n \times n$ matrices A with real entries. Define a transformation $T: V \to V$ where $T(A) = \frac{1}{2}(A + A^T)$. (Here, A^T is the matrix transpose of A.)

- a) Verify that T is linear. You may use familiar facts about transpose.
- b) Describe the image of T, and find its dimension.
- c) Describe the kernel of T , and find its dimension.
- d) Verify the rank and nullity add up what you would expect. (Final note: T is called the *symmetrization operator*.)
- 10. Recall that \mathcal{P}_2 be the linear space of polynomials of degree at most 2, and let $T: \mathcal{P}_2 \to \mathcal{P}_2$ be the transformation

$$(T(p))(t) = \frac{1}{t} \int_0^t p(s) \, ds.$$

For instance, if $p(t) = 2 + 3t^2$, then $T(p) = 2 + t^2$.

- a) Prove that T is a linear transformation.
- b) Find the kernel of T, and find its dimension.
- c) Find the range (=image) of T, and compute its dimension.
- d) Verify the dimension of the kernel and the dimension of the range add up to what you would expect.
- e) Using the standard basis $\{1, t, t^2\}$ for \mathcal{P}_2 , represent the linear transformation T as a matrix A.
- f) Using your matrix represention from (e), find T(p) where p(t) = t 2.

Bonus Problem

[Please give this directly to Professor Silberstein]

1-B Let $L: V \to V$ be a linear map on a linear space V.

- a) Show that $\ker L \subset \ker L^2$ and, more generally, $\ker L^k \subset \ker L^{k+1}$ for all $k \ge 1$.
- b) If $\ker L^j = \ker L^{j+1}$ for some integer j, show that $\ker L^k = \ker L^{k+1}$ for all $k \ge j$.
- c) Let A be an $n \times n$ matrix. If $A^j = 0$ for some integer j (perhaps j > n), show that $A^n = 0$.

[Last revised: February 2, 2013]