
Math 312, Spring 2013 Aaron M. Silberstein

Problem Set 5
Due: To Shanshan’s mailbox in the math department, 1 pm Friday, Feb. 22.

In addition to the problems below, you should also know how to solve the following problems
from the text. Most are simple exercises. These are not to be handed in.

Sec. 5.1, #28, 29, 31
Sec. 5.2 #33

Remark: We will not cover the material on QR factorization. It is an important numerical
technique – but our time is short.

When we deal with the vector spaces Rn , we will always use the unique symmetric inner
product in which the standard basis e1, . . . , en is orthonormal.

1. [Bretscher, Sec. 5.1 #16] Consider the following vectors in R4

~u1 =


1/2
1/2
1/2
1/2

 , ~u2 =


1/2
1/2
−1/2
−1/2

 , ~u3 =


1/2
−1/2

1/2
−1/2

 .

Can you find a vector u4 in R4 such that the vectors ~u1 , ~u2 , ~u3 , ~u4 are orthonormal?
If so, how many such vectors are there?

2. [Bretscher, Sec. 5.1 #17] Find a basis for W⊥ , where

W = span




1
2
3
4

 ,


5
6
7
8


 .

3. [Bretscher, Sec. 5.1 #21] Find scalars a , b , c , d , e , f , and g so that the following
vectors are orthonormal: ad

f

 ,

b1
g

 ,

 c
e

1/2

 .

4. Let V be an inner product space and S a subspace. Then we write S⊥ for the set of
all vectors in V that are orthogonal to S . It is called the orthogonal complement of S ,
and clearly is also a subspace of V .

a) In R3 , let S be the points (x1, x2, x3) that satisfy x1− 2x2 + x3 = 0. What is the
dimension of S⊥? [This should be a simple mental exercise.]

1



b) Let A : R3 → R5 . If the dimension of the kernel of A is 2, what is the dimension
of image(A)⊥?

.

5. [Bretscher, Sec. 5.1 #26] Find the orthogonal projection PS of ~x :=

49
49
49

 into

the subspace S of R3 spanned by ~v1 :=

2
3
6

 and ~v2 :=

 3
−6

2

 .

6. [Bretscher, Sec. 5.1 #37] Consider a plane V in R3 with orthonormal basis ~u1
and ~u2 . Let ~x be a vector in R3 . Find a formula for the reflection R~x of ~x across the
plane V .

7. [Bretscher, Sec. 5.2 #32] Find an orthonormal basis for the plane {(x1, x2, x3) ∈
R3 | x1 + x2 + x3 = 0}.

8. [Bretscher, Sec. 5.3 #10] Consider the space P2 of real polynomials of degree at
most 2 with the inner product

〈f, g〉 =

∫ 1

−1
f(t)g(t) dt.

Find an orthonormal basis for the vector subspace of P2 consisting of all the degree 2
polynomials orthogonal to f(t) = t .

9. [Bretscher, Sec. 5.3 #16] Consider the space P1 with the inner product

〈f, g〉 =

∫ 1

0
f(t)g(t) dt.

a) Find an orthonormal basis for this space.

b) Find the linear polynomial g(t) = a + bt that best approximates the polynomial
f(t) = t2 . Thus, one wants to pick g(t) so that ‖f − g‖ is as small as possible.

10. [See http://www.math.upenn.edu/~kazdan/312S13/notes/Lu=-DDu.pdf]. Consider
the space C2

0 [0, 1] of twice continuously differentiable functions u(x) with u(0) = 0
and u(1) = 0. Define the differential operator Mu by the formula Mu = ((1 +x2)u′)′ .
Find the adjoint M∗ (you should find that M is self-adjoint).
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The remaining problems are from the Lecture notes on Vectors
http://www.math.upenn.edu/~kazdan/312F12/notes/vectors/vectors8.pdf.

Note the similarity in notation between adjoint matrices in these notes and dual linear
transformations. This is no accident!
Recall that giving an inner product 〈·, ·〉 on a vector space V is the same as giving a map

ϕ〈·,·〉 : V → V ∗;

given the inner product, we define

ϕ〈·,·〉(v)(w) := 〈v, w〉.

That is, for each v , bilinearity guarantees ϕ〈·,·〉(v) is a linear function of w , so is in the
dual space of V . Conversely, given a linear transformation

ψ : V → V ∗

we may define an inner product

〈v, w〉ψ := ψ(v)(w).

Bilinearity follows from the assumption that ψ is a linear transformation. These are inverse
constructions:

ϕ〈v,w〉ψ = ψ.

Recall that nondegeneracy of 〈·, ·〉 is equivalent to ϕ〈·,·〉 being an invertible linear map
(as long as V is finite-dimensional).
As an example, given a row vector [r1, . . . , rn] we may define a linear transformation

L[r1,...,rn] : Rn → R

from the vector space Rn of column vectors by:

L[r1,...,rn]


 c1

...
cn


 := [r1, . . . , rn] ·

 c1
...
cn

 =
n∑
i=1

rici.

In other words, the row vectors may be identified with a subspace of the dual space Rn∗ .
That the row vectors, under this identification, have basis eTi (the transpose of the column
vector associated to ei ) and {LeT1 , . . . , LeTn } satisfies the properties of a dual basis to the

basis {e1, . . . , en}, we see that Rn∗ is canonically identified with the vector space of row
vectors (and the row vectors are not just a subspace!)
If we have a nondegenerate inner product 〈·, ·〉1 on a finite-dimensional vector space V and
a nondegenerate inner product 〈·, ·〉2 on a finite-dimensional vector space W and a linear
transformation

T : V →W
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Then we know (see Definition 5 of the writeup on dual spaces on the webpage!) that there
is a dual map

T ∗ : W ∗ → V ∗

given by
T ∗(ω)(v) := ω(Tv).

To get the adjoint as in the notes on Prof. Kazdan’s webpage, we apply:

ϕ−1〈·,·〉1T
∗ ◦ ϕ〈·,·〉2

(Think about this!)

10. [p. 8 #5] The origin and the vectors X , Y , and X + Y define a parallelogram whose
diagonals have length X + Y and X − Y . Prove the parallelogram law

‖X + Y ‖2 + ‖X − Y ‖2 = 2‖X‖2 + 2‖Y ‖2;

This states that in a parallelogram, the sum of the squares of the lengths of the diagonals
equals the sum of the squares of the four sides.

11. [p. 8 #6] (Math 240 Review)

a) Find the distance from the straight line 3x − 4y = 10 to the origin. [It may help
to observe that this line is parallel to the plane 3x− 4y = 0, whose normal vector
is clearly ~N = (3, −4).]

b) Find the distance from the plane ax+ by+ cz = d to the origin (assume the vector
~N = (a, b, c) 6= 0).

12. [p. 8 #8]

a) If X and Y are real vectors, show that

〈X, Y 〉 =
1

4

(
‖X + Y ‖2 − ‖X − Y ‖2

)
.

This formula is the simplest way to recover properties of the inner product from
the norm.

b) As an application, show that if a square matrix R has the property that it preserves
length, so ‖RX‖ = ‖X‖ for every vector X , then it preserves the inner product,
that is, 〈RX, RY 〉 = 〈X, Y 〉 for all vectors X and Y .

13. [p. 9 #10] (Also done in class)

a) If a certain matrix C satisfies 〈X, CY 〉 = 0 for all vectors X and Y , show that
C = 0.
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b) If the matrices A and B satisfy 〈X, AY 〉 = 〈X, BY 〉 for all vectors X and Y ,
show that A = B .

14. [p. 9 #11–12] A matrix A is called anti-symmetric (or skew-symmetric) if A∗ =
−A .

a) Give an example of a 3× 3 anti-symmetric matrix.

b) If A is any anti-symmetric matrix, show that 〈X, AX〉 = 0 for all vectors X .

c) Say X(t) is a solution of the differential equation
dX

dt
= AX , where A is an anti-

symmetric matrix. Show that ‖X(t)‖ = constant. [Remark: A special case is

that X(t) :=

(
cos t
sin t

)
satisfies X ′ = AX with A = ( 0 −1

1 0 ) so this problem gives

another proof that cos2 t+ sin2 t = 1.]

[Last revised: February 19, 2013]
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