Problem Set 5

Due: To Shanshan's mailbox in the math department, 1 pm Friday, Feb. 22.
In addition to the problems below, you should also know how to solve the following problems from the text. Most are simple exercises. These are not to be handed in.

Sec. 5.1, \#28, 29, 31
Sec. $5.2 \# 33$
Remark: We will not cover the material on QR factorization. It is an important numerical technique - but our time is short.

When we deal with the vector spaces \mathbb{R}^{n}, we will always use the unique symmetric inner product in which the standard basis e_{1}, \ldots, e_{n} is orthonormal.

1. [Bretscher, Sec. 5.1 \#16] Consider the following vectors in \mathbb{R}^{4}

$$
\vec{u}_{1}=\left(\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{r}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
-1 / 2
\end{array}\right), \quad \vec{u}_{3}=\left(\begin{array}{r}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right) .
$$

Can you find a vector u_{4} in \mathbb{R}^{4} such that the vectors $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}, \vec{u}_{4}$ are orthonormal? If so, how many such vectors are there?
2. [Bretscher, Sec. 5.1 \#17] Find a basis for W^{\perp}, where

$$
W=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right),\left(\begin{array}{l}
5 \\
6 \\
7 \\
8
\end{array}\right)\right\} .
$$

3. [Bretscher, Sec. 5.1 \#21] Find scalars a, b, c, d, e, f, and g so that the following vectors are orthonormal:

$$
\left(\begin{array}{l}
a \\
d \\
f
\end{array}\right), \quad\left(\begin{array}{l}
b \\
1 \\
g
\end{array}\right), \quad\left(\begin{array}{c}
c \\
e \\
1 / 2
\end{array}\right) .
$$

4. Let V be an inner product space and S a subspace. Then we write S^{\perp} for the set of all vectors in V that are orthogonal to S. It is called the orthogonal complement of S, and clearly is also a subspace of V.
a) In \mathbb{R}^{3}, let S be the points $\left(x_{1}, x_{2}, x_{3}\right)$ that satisfy $x_{1}-2 x_{2}+x_{3}=0$. What is the dimension of S^{\perp} ? [This should be a simple mental exercise.]
b) Let $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$. If the dimension of the kernel of A is 2 , what is the dimension of image $(A)^{\perp}$?
5. [Bretscher, Sec. 5.1 \#26] Find the orthogonal projection P_{S} of $\vec{x}:=\left(\begin{array}{l}49 \\ 49 \\ 49\end{array}\right)$ into the subspace S of \mathbb{R}^{3} spanned by $\vec{v}_{1}:=\left(\begin{array}{l}2 \\ 3 \\ 6\end{array}\right)$ and $\vec{v}_{2}:=\left(\begin{array}{r}3 \\ -6 \\ 2\end{array}\right)$.
6. [Bretscher, Sec. 5.1 \#37] Consider a plane V in \mathbb{R}^{3} with orthonormal basis \vec{u}_{1} and \vec{u}_{2}. Let \vec{x} be a vector in \mathbb{R}^{3}. Find a formula for the reflection $R \vec{x}$ of \vec{x} across the plane V.
7. [Bretscher, Sec. 5.2 \#32] Find an orthonormal basis for the plane $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.$ $\left.\mathbb{R}^{3} \mid x_{1}+x_{2}+x_{3}=0\right\}$.
8. [Bretscher, Sec. 5.3 \#10] Consider the space \mathcal{P}_{2} of real polynomials of degree at most 2 with the inner product

$$
\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t
$$

Find an orthonormal basis for the vector subspace of \mathcal{P}_{2} consisting of all the degree 2 polynomials orthogonal to $f(t)=t$.
9. [Bretscher, Sec. $5.3 \# 16]$ Consider the space \mathcal{P}_{1} with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

a) Find an orthonormal basis for this space.
b) Find the linear polynomial $g(t)=a+b t$ that best approximates the polynomial $f(t)=t^{2}$. Thus, one wants to pick $g(t)$ so that $\|f-g\|$ is as small as possible.
10. [See http://www.math.upenn.edu/~kazdan/312S13/notes/Lu=-DDu.pdf]. Consider the space $C_{0}^{2}[0,1]$ of twice continuously differentiable functions $u(x)$ with $u(0)=0$ and $u(1)=0$. Define the differential operator $M u$ by the formula $M u=\left(\left(1+x^{2}\right) u^{\prime}\right)^{\prime}$. Find the adjoint M^{*} (you should find that M is self-adjoint).

The remaining problems are from the Lecture notes on Vectors http://www.math.upenn.edu/~kazdan/312F12/notes/vectors/vectors8.pdf.
Note the similarity in notation between adjoint matrices in these notes and dual linear transformations. This is no accident!
Recall that giving an inner product $\langle\cdot, \cdot\rangle$ on a vector space V is the same as giving a map

$$
\varphi_{\langle\cdot,\rangle}: V \rightarrow V^{*} ;
$$

given the inner product, we define

$$
\varphi_{\langle\cdot,\rangle\rangle}(v)(w):=\langle v, w\rangle .
$$

That is, for each v, bilinearity guarantees $\varphi_{\langle\cdot,\rangle\rangle}(v)$ is a linear function of w, so is in the dual space of V. Conversely, given a linear transformation

$$
\psi: V \rightarrow V^{*}
$$

we may define an inner product

$$
\langle v, w\rangle_{\psi}:=\psi(v)(w) .
$$

Bilinearity follows from the assumption that ψ is a linear transformation. These are inverse constructions:

$$
\varphi_{\langle v, w\rangle_{\psi}}=\psi .
$$

Recall that nondegeneracy of $\langle\cdot, \cdot\rangle$ is equivalent to $\varphi_{\langle\cdot, \cdot\rangle}$ being an invertible linear map (as long as V is finite-dimensional).
As an example, given a row vector $\left[r_{1}, \ldots, r_{n}\right]$ we may define a linear transformation

$$
L_{\left[r_{1}, \ldots, r_{n}\right]}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

from the vector space \mathbb{R}^{n} of column vectors by:

$$
L_{\left[r_{1}, \ldots, r_{n}\right]}\left(\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]\right):=\left[r_{1}, \ldots, r_{n}\right] \cdot\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\sum_{i=1}^{n} r_{i} c_{i} .
$$

In other words, the row vectors may be identified with a subspace of the dual space $\mathbb{R}^{n *}$. That the row vectors, under this identification, have basis e_{i}^{T} (the transpose of the column vector associated to e_{i}) and $\left\{L_{e_{1}^{T}}, \ldots, L_{e_{n}^{T}}\right\}$ satisfies the properties of a dual basis to the basis $\left\{e_{1}, \ldots, e_{n}\right\}$, we see that $\mathbb{R}^{n *}$ is canonically identified with the vector space of row vectors (and the row vectors are not just a subspace!)
If we have a nondegenerate inner product $\langle\cdot, \cdot\rangle_{1}$ on a finite-dimensional vector space V and a nondegenerate inner product $\langle\cdot, \cdot\rangle_{2}$ on a finite-dimensional vector space W and a linear transformation

$$
T: V \rightarrow W
$$

Then we know (see Definition 5 of the writeup on dual spaces on the webpage!) that there is a dual map

$$
T^{*}: W^{*} \rightarrow V^{*}
$$

given by

$$
T^{*}(\omega)(v):=\omega(T v)
$$

To get the adjoint as in the notes on Prof. Kazdan's webpage, we apply:

$$
\varphi_{\langle\cdot, \cdot\rangle_{1}}^{-1} T^{*} \circ \varphi_{\langle\cdot, \cdot\rangle_{2}}
$$

(Think about this!)
10. [p. $8 \# 5$] The origin and the vectors X, Y, and $X+Y$ define a parallelogram whose diagonals have length $X+Y$ and $X-Y$. Prove the parallelogram law

$$
\|X+Y\|^{2}+\|X-Y\|^{2}=2\|X\|^{2}+2\|Y\|^{2}
$$

This states that in a parallelogram, the sum of the squares of the lengths of the diagonals equals the sum of the squares of the four sides.
11. [p. $8 \# 6$] (Math 240 Review)
a) Find the distance from the straight line $3 x-4 y=10$ to the origin. [It may help to observe that this line is parallel to the plane $3 x-4 y=0$, whose normal vector is clearly $\vec{N}=(3,-4)$.]
b) Find the distance from the plane $a x+b y+c z=d$ to the origin (assume the vector $\vec{N}=(a, b, c) \neq 0)$.
12. [p. $8 \# 8$]
a) If X and Y are real vectors, show that

$$
\langle X, Y\rangle=\frac{1}{4}\left(\|X+Y\|^{2}-\|X-Y\|^{2}\right)
$$

This formula is the simplest way to recover properties of the inner product from the norm.
b) As an application, show that if a square matrix R has the property that it preserves length, so $\|R X\|=\|X\|$ for every vector X, then it preserves the inner product, that is, $\langle R X, R Y\rangle=\langle X, Y\rangle$ for all vectors X and Y.
13. [p. $9 \# 10$] (Also done in class)
a) If a certain matrix C satisfies $\langle X, C Y\rangle=0$ for all vectors X and Y, show that $C=0$.
b) If the matrices A and B satisfy $\langle X, A Y\rangle=\langle X, B Y\rangle$ for all vectors X and Y, show that $A=B$.
14. [p. $9 \# 11-12]$ A matrix A is called anti-symmetric (or skew-symmetric) if $A^{*}=$ $-A$.
a) Give an example of a 3×3 anti-symmetric matrix.
b) If A is any anti-symmetric matrix, show that $\langle X, A X\rangle=0$ for all vectors X.
c) Say $X(t)$ is a solution of the differential equation $\frac{d X}{d t}=A X$, where A is an antisymmetric matrix. Show that $\|X(t)\|=$ constant. [Remark: A special case is that $X(t):=\binom{\cos t}{\sin t}$ satisfies $X^{\prime}=A X$ with $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ so this problem gives another proof that $\cos ^{2} t+\sin ^{2} t=1$.]
[Last revised: February 19, 2013]

