Problem Set 7

DUE: To Shanshan's mailbox, Friday, March 15, 1 pm.

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then $Q(\vec{x}) := \langle \vec{x}, A\vec{x} \rangle$ is a quadratic polynomial. Given a quadratic polynomial, it is easy to find the (unique) symmetric symmetric matrix A. Here is an example. Say $Q(\vec{x}) := 3x_1^2 - 8x_1x_2 - 5x_2^2$ To find A, note that $-8x_1x_2 = -4x_1x_2 - 4x_2x_2$ so we can rewite Q as

$$Q(\vec{x}) := 3x_1^2 - 4x_1x_2 - 4x_2x_1 - 5x_2^2.$$

If we let

$$A := \begin{pmatrix} 3 & -4 \\ -4 & -5 \end{pmatrix} \quad [\text{Note } A \text{ is a symmetric matrix}],$$

then it is easy to verify that $Q(\vec{x}) = \langle \vec{x}, A\vec{x} \rangle$. In the remaining problems we will use this to help work with quadratic polynomials.

- 1. In each of these find a 3×3 symmetric matrix A so that $Q(\vec{x}) = \langle \vec{x}, A\vec{x} \rangle$.
 - a) $Q(\vec{x}) := 3x_1^2 8x_1x_2 5x_2^2 + x_3^2$.
 - b) $Q(\vec{x}) := 3x_1^2 8x_1x_2 5x_2^2 x_2x_3 + x_3^2$.
 - c) $Q(\vec{x}) := 3x_1^2 8x_1x_2 5x_2^2 x_2x_3.$
- 2. [LOWER ORDER TERMS AND COMPLETING THE SQUARE] Which is simpler:
 - $z = x_1^2 + 4x_2^2 2x_1 + 4x_2 + 2$ or $z = y_1^2 + 4y_2^2$?

If we let $y_1 = x_1 - 1$ and $y_2 = x_2 + 1/2$, they are essentially the same. All we did was translate the origin to (1, -1/2).

The point of this problem is to generalize this to quadratic polynomials in several variables. Let

$$Q(\vec{x}) = \sum_{ij} a_{ij} x_i x_j + 2 \sum_{ij} b_i x_i + c$$
$$= \langle \vec{x}, A\vec{x} \rangle + 2 \langle b, \vec{x} \rangle + c$$

be a real quadratic polynomial so $\vec{x} = (x_1, \ldots, x_n)$, $\vec{b} = (b_1, \ldots, b_n)$ are real vectors and $A = (a_{ij})$ is a real symmetric $n \times n$ matrix.

In the case n = 1, $Q(x) = ax^2 + 2bx + c$ which is clearly simpler in the special case b = 0. In this case, if $a \neq 0$, by completing the square we find

$$Q(x) = a (x + b/a)^{2} + c - 2b^{2}/a = ay^{2} + \gamma,$$

where we let y = x - b/a and $\gamma = c - b^2/a$. Thus, by translating the origin: x = y + b/a we can eliminate the linear term in the quadatratic polynomial – so it becomes simpler.

a) Similarly, for any dimension n, if A is invertible, using the above as a model, show there is a change of variables $\vec{y} == \vec{x} - \vec{v}$ (this is a translation by the vector \vec{v}) so that in the new \vec{y} variables Q has the form

$$\hat{Q}(\vec{y}) := Q(\vec{y} + \vec{v}) = \langle \vec{y}, A\vec{y} \rangle + \gamma \quad \text{that is,} \quad \hat{Q}(\vec{y}) = \sum a_{ij} y_i y_j + \gamma,$$

where γ involves A, b, and c – but no terms that are linear in \vec{y} . [In the case n = 1, which you should try *first*, this means using a change of variables y = x - v to change the polynomial $ax^2 + 2bx + c$ to the simpler $ay^2 + \gamma$.]

- b) As an example, apply this to $Q(\vec{x}) = 2x_1^2 + 2x_1x_2 + 3x_2 4$.
- 3. For $\vec{x} \in \mathbb{R}^n$ let $Q(\vec{x}) := \langle \vec{x}, A\vec{x} \rangle$, where A is a real symmetric matrix. We say that A is positive definite if $Q(\vec{x}) > 0$ for all $\vec{x} \neq 0$, negative definite if $Q(\vec{x}) < 0$ for all $\vec{x} \neq 0$, and indefinite if $Q(\vec{x}) > 0$ for some \vec{x} but $Q(\vec{x}) < 0$ for some other \vec{x} .
 - a) In the special case n = 2 give (simple!) examples of matrices A that are positive definite, negative definite, and indefinite.
 - b) In the special case where A is an invertible *diagonal* matrix,

$$A = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

under what conditions is $Q(\vec{x})$ positive definite, negative definite, and indefinite? [REMARK: We will see that the general case can *always* be reduced to this special case where A is diagonal.]

[Last revised: March 9, 2013]