Problem Set 7

Due: To Shanshan's mailbox, Friday, March $15,1 \mathrm{pm}$.

Quadratic Polynomials Using Inner Products

If A is a real symmetric matrix (so it is self-adjoint), then $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$ is a quadratic polynomial. Given a quadratic polynomial, it is easy to find the (unique) symmetric symmentic matrix A. Here is an example. Say $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}$ To find A, note that $-8 x_{1} x_{2}=-4 x_{1} x_{2}-4 x_{2} x_{2}$ so we can rewite Q as

$$
Q(\vec{x}):=3 x_{1}^{2}-4 x_{1} x_{2}-4 x_{2} x_{1}-5 x_{2}^{2} .
$$

If we let

$$
A:=\left(\begin{array}{rr}
3 & -4 \\
-4 & -5
\end{array}\right) \quad[\text { Note } A \text { is a symmetric matrix }]
$$

then it is easy to verify that $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle$. In the remaining problems we will use this to help work with quadratic polynomials.

1. In each of these find a 3×3 symmetric matrix A so that $Q(\vec{x})=\langle\vec{x}, A \vec{x}\rangle$.
a) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}+x_{3}^{2}$.
b) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}-x_{2} x_{3}+x_{3}^{2}$.
c) $Q(\vec{x}):=3 x_{1}^{2}-8 x_{1} x_{2}-5 x_{2}^{2}-x_{2} x_{3}$.
2. [Lower order terms and Completing the Square] Which is simpler:

$$
z=x_{1}^{2}+4 x_{2}^{2}-2 x_{1}+4 x_{2}+2 \quad \text { or } \quad z=y_{1}^{2}+4 y_{2}^{2} ?
$$

If we let $y_{1}=x_{1}-1$ and $y_{2}=x_{2}+1 / 2$, they are essentially the same. All we did was translate the origin to $(1,-1 / 2)$.
The point of this problem is to generalize this to quadratic polynomials in several variables. Let

$$
\begin{aligned}
Q(\vec{x}) & =\sum a_{i j} x_{i} x_{j}+2 \sum b_{i} x_{i}+c \\
& =\langle\vec{x}, A \vec{x}\rangle+2\langle b, \vec{x}\rangle+c
\end{aligned}
$$

be a real quadratic polynomial so $\vec{x}=\left(x_{1}, \ldots, x_{n}\right), \vec{b}=\left(b_{1}, \ldots, b_{n}\right)$ are real vectors and $A=\left(a_{i j}\right)$ is a real symmetric $n \times n$ matrix.
In the case $n=1, Q(x)=a x^{2}+2 b x+c$ which is clearly simpler in the special case $b=0$. In this case, if $a \neq 0$, by completing the square we find

$$
Q(x)=a(x+b / a)^{2}+c-2 b^{2} / a=a y^{2}+\gamma,
$$

where we let $y=x-b / a$ and $\gamma=c-b^{2} / a$. Thus, by translating the origin: $x=$ $y+b / a$ we can eliminate the linear term in the quadatratic polynomial - so it becomes simpler.
a) Similarly, for any dimension n, if A is invertible, using the above as a model, show there is a change of variables $\vec{y}==\vec{x}-\vec{v}$ (this is a translation by the vector \vec{v}) so that in the new \vec{y} variables Q hasthe form

$$
\hat{Q}(\vec{y}):=Q(\vec{y}+\vec{v})=\langle\vec{y}, A \vec{y}\rangle+\gamma \quad \text { that is, } \quad \hat{Q}(\vec{y})=\sum a_{i j} y_{i} y_{j}+\gamma,
$$

where γ involves A, b, and c - but no terms that are linear in \vec{y}. [In the case $n=1$, which you should try first, this means using a change of variables $y=x-v$ to change the polynomial $a x^{2}+2 b x+c$ to the simpler $a y^{2}+\gamma$.]
b) As an example, apply this to $Q(\vec{x})=2 x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}-4$.
3. For $\vec{x} \in \mathbb{R}^{n}$ let $Q(\vec{x}):=\langle\vec{x}, A \vec{x}\rangle$, where A is a real symmetric matrix. We say that A is positive definite if $Q(\vec{x})>0$ for all $\vec{x} \neq 0$, negative definite if $Q(\vec{x})<0$ for all $\vec{x} \neq 0$, and indefinite if $Q(\vec{x})>0$ for some \vec{x} but $Q(\vec{x})<0$ for some other \vec{x}.
a) In the special case $n=2$ give (simple!) examples of matrices A that are positive definite, negative definite, and indefinite.
b) In the special case where A is an invertible diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right),
$$

under what conditions is $Q(\vec{x})$ positive definite, negative definite, and indefinite? [Remark: We will see that the general case can always be reduced to this special case where A is diagonal.]
[Last revised: March 9, 2013]

