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This problem set will be due Friday, February 1, 2013 at 1 pm in Matti’s
mailbox.

1 The Craft (and Art) of Writing Proofs: Induction

This week, we will work on writing induction proofs. Unlike routine verification of axioms
(last week’s topic), induction proofs are somewhat less straightforward. However, they are
one of the most powerful tools in the mathematician’s toolbox.

A proof by induction uses the inductive principle of the natural numbers: let S be a
subset of N such that 0 ∈ S and if x ∈ S then xs ∈ S (remember: s means successor). Then
S = N. (Here, I am going against my upbringing and using the notation Prof. Pop used
last semester: 0 ∈ N.) To prove statements using induction, we need to make a sequence
of statements indexed over the integers, {ϕn}n∈N, and we want to prove that each ϕn is
true. Let

Sϕ = {n ∈ N | ϕn is true} .

1. If we show ϕ0 is true, we have shown that 0 ∈ Sϕ (this is called the base case of an
induction proof).

2. If we show that, assuming ϕn we can prove ϕn+1, we have shown that n ∈ Sϕ =⇒
ns ∈ Sϕ so S = N (this is called the inductive step).

So these are our two goals. So in order to do an induction proof, we need to break our
statement into an infinite number of statements ordered by the integers. We can do even
better, though:

Problem 1. Let S ⊆ N be such that 0 ∈ S and for all n ∈ N, if m < n =⇒ m ∈ S then
n ∈ S. Prove, using induction, that S = N.

This problem shows us that, when proving ϕn+1 we can assume all the statements ϕm
for m ≤ n; this means we have more true statements to use in our proof of the inductive
step.
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Problem 2. Prove that the well-ordering principle and the inductive principle are equiv-
alent.

Here is a typical problem for which you would need induction. If k and n are positive
integers, with k ≤ n, let (

n

k

)
=

n!

k!(n− k)!

(where 0! = 1).

Theorem 1. ∀n ≥ 1, (x+ y)n =
∑n

k=0

(
n
k

)
xkyn−k.

Proof. The induction will be on n. That is, we have the statements

ϕn : (x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

We first prove ϕ1 is true. Indeed,

(x+ y)1 = x+ y =
1!

0!1!
x+

1!

1!0!
y.

(Note: Usually, the base case of an inductive proof will be a straightforward verification.)
Now, we prove that ϕn =⇒ ϕn+1. So assuming ϕn, we have:

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k.

Now,

(x+ y)n+1 = (x+ y)(x+ y)n = (x+ y)
n∑
k=0

(
n

k

)
xkyn−k.

Distributing (and this, itself, is an induction proof, whose steps we will skip over!) we have

(x+ y)n+1 = yn+1 +

n∑
k=1

((
n

k

)
+

(
n

(k − 1)

))
xkyn+1−k + xn+1.

So now our inductive step is equivalent to proving:(
n

k

)
+

(
n

(k − 1)

)
=

(
n+ 1

k

)
.

So we write this out:(
n

k

)
+

(
n

(k − 1)

)
=

n!

k!(n− k)!
+

n!

(k − 1)!(n− k + 1)!
=
n!((k − 1)!(n− k + 1)! + k!(n− k)!)

k!(n− k)!(k − 1)!(n− k + 1)!
.
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(Explanation, not to be included in a proof like what we write: We see that in the de-
nominator, in order to get the correct denominator for

(
n+1
k

)
, we want to get rid of the

(n− k)!(k − 1)!. So factoring out the numerator, we have

n!((k − 1)!(n− k + 1)! + k!(n− k)!)

k!(n− k)!(k − 1)!(n− k + 1)!
=

n!(k − 1)!(n− k)!((n− k + 1) + k)

k!(n− k)!(k − 1)!(n− k + 1)!

=
n!(n+ 1)

k!(n− k + 1)!

=
(n+ 1)!

k!(n− k + 1)!

=

(
n+ 1

k

)
.

This proves the inductive step.

In the next section, when in doubt, use induction!

2 Newton’s Theorem on Symmetric Polynomials

At a key point in the quadratic formula, we needed to be able to write α − β in terms of
coefficients of our quadratic polynomial. Newton’s theorem tells us precisely what sorts of
expressions in the roots of a polynomial can be written in terms of the coefficients of the
polynomial.

We start with the polynomial

n∏
i=1

(x− αi) = an(α1, . . . , αn) + an−1(α1, . . . , αn)x+ · · ·+ a1(α1, . . . , αn)xn−1 + xn.

Our goal is to study these coefficients, the elementary symmetric polynomials of
α1, . . . , αn. Let

Rn = K[α1, . . . , αn]

be the ring of polynomials in n variables over our field K. Then the symmetric group Sn
acts on Rn by, for σ ∈ Sn and f ∈ Rn,

f(x1, . . . , xn)σ = f(x1σ, . . . , xnσ).

Remember that we always write our permutation actions on the right.
If a group G acts on a set X, we let

XG = {x ∈ X | ∀ g ∈ G, gx = x} (1)

be the set of G-invariants of X.
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Problem 3. Prove that Sn acts by ring homomorphisms. In particular, RSn
n is a subring.

Problem 4. Prove that ai(α1, . . . , αn) ∈ RSn
n .

Problem 5. Consider α4
1 + α4

2 ∈ R2. Write down α4
1 + α4

2 as a polynomial in a1 and a2.

Problem 6. Let

Pn,d = {f(α1, . . . , αn) ∈ K[α1, . . . , αn] | f homogeneous of degree d} ;

recall that a homogeneous polynomial of degree d is a sum of monomials, all of degree
d. Prove that

Rn =

∞⊕
d=0

Pn,d

is a grading of Rn; that is

1. If ad ∈ Pn,d and ad′ ∈ Pn,d′ then adad′ ∈ Pn,d+d′.

2. Every element of Rn can be written uniquely as a finite sum of elements of Pn,d.

Problem 7. Prove that this grading is preserved under Sn. Thus

RSn
n =

∞⊕
d=0

PSn
n,d.

Problem 8. Prove that ad(α1, . . . , αn) ∈ Pn,d. Deduce that

am1
1 am2

2 . . . amn
n ∈ Pn,∑n

i=1 imi
.

Problem 9. For every monomial

µ = αm1
1 . . . αmn

n

let
w(µ) = (m1, . . . ,mn)

be the ordered tuple of exponents; call this tuple the weights. Prove that for σ ∈ Sn,

µσ = w(µ)σ

where Sn acts on n-tuples by permuting the coordinates. Thus, orbits of monomials cor-
respond to unordered tuples {m1, . . . ,mn}. The unordered tuple associated to a monomial
µ will be denoted by ω(µ). We will think of ω(µ) either as an unordered tuple, or we may
put an order on it so it becomes non-decreasing (there is a unique way of doing this). In
this way, we may use the dictionary order on nondecreasing finite sets to compare weights;
we say that ω(µ) ≥ ω(µ′) if this is so in the dictionary order, starting from the largest
term. Given an unordered or ordered tuple of integers, we will call its degree the sum of
its elements.
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Problem 10. Let ai11 . . . a
in
n be a product of elementary symmetric polynomials. Prove that

there is a term in ai11 . . . a
in
n of “highest weight”.

Problem 11. Let Ω({µ1, . . . , µn}) be the K-vector space generated by all monomials µ
such that

ω(µ) = {m1, . . . ,mn}.

Prove that
Pn,d =

⊕
∑

imi=d

Ω({m1, . . . ,mn})

and that this decomposition is stable under the action of Sn.

Problem 12. Write down explicitly Ω({m1, . . . ,mn})Sn.

Problem 13. Prove that
RSn
n = K[a1, . . . , an]

so a polynomial is symmetric if and only if it can be written as a polynomial in the elemen-
tary symmetric polynomials; furthermore, there is a unique way to write it as such. This
is Newton’s theorem.

5


