Math 371, Spring 2013, PSet 3

Aaron Michael Silberstein

February 19, 2013

This problem set will be due Friday, March 1, 2013 at 1 pm in Matti's mailbox.

1 The group S_{3}

S_{3} is the group of permutations on 3 elements. These problems should be review, and I am assuming you know about cycle notation. If not, check your textbook!

1. List the elements in S_{3}.
2. List the subgroups of S_{3}.
3. List the normal subgroups of S_{3}.
4. List the conjugacy classes of S_{3}.

2 The Group Algebra I

Let G be a finite group, and R a ring. We may define the group algebra to consist of formal sums

$$
R[G]={ }_{\operatorname{def}}\left\{\sum_{g \in G} r_{g} g\right\}
$$

where multiplication is given by

$$
\left(\sum_{g \in G} r_{g} g\right)\left(\sum_{h \in G} r_{h}^{\prime} h\right)=\sum_{\gamma \in G}\left(\sum_{g h=\gamma} r_{g} r_{h}^{\prime}\right) \gamma .
$$

From now on, we assume R is a commutative ring with identity.

1. Verify that $R[G]$ is a ring.
2. For which groups G is $R[G]$ commutative? Prove your assertion.
3. If $\varphi: G \rightarrow H$ is a homomorphism, prove that φ extends to a ring homomorphism $R[\varphi]: R[G] \rightarrow R[H]$.
4. The center of a non-commutative ring S is the set

$$
Z(S)=\{z \in S \mid \forall s \in S, z s=s z\}
$$

Prove that $Z(S)$ is a ring.
5. If k is a field, write down a basis of $k[G]$ as a k-vector space. Write down a basis of $Z(k[G])$ as a k-vector space.

3 The General Cubic Extension

Let k be a field, and $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ be the field of rational functions in three variables over k - that is, $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is the field of fractions of the polynomial ring $k\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right]$. Let

$$
a_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3} ; a_{2}=\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3} ; \text { and } a_{3}=\alpha_{1} \alpha_{2} \alpha_{3}
$$

1. Let S_{3} act on $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ by ring homomorphisms by permuting the α_{i} 's. Prove that the fixed field of $S^{3}, k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)^{S_{3}}$, is $k\left(a_{1}, a_{2}, a_{3}\right)$ (hint: last week's problem set!).
2. What is $\operatorname{dim}_{k\left(a_{1}, a_{2}, a_{3}\right)} k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$? Write down a basis.
3. Let $K=k\left(a_{1}, a_{2}, a_{3}, \alpha_{1}\right)$. What is $\operatorname{dim}_{k\left(a_{1}, a_{2}, a_{3}\right)} K$? Prove that $\operatorname{Aut}\left(K / k\left(a_{1}, a_{2}, a_{3}\right)\right)$ is trivial.
4. Let $f(x)=x^{3}-a_{1} x^{2}+a_{2} x+a_{3}$. Prove that $f(x)$ splits into a product of linear factors in $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$, but not in any subfield. We call $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ a splitting field of f over $k\left(a_{1}, a_{2}, a_{3}\right)$.

4 The Cyclic Cubic Extension

Let k be a field, and let $\kappa(t)=t^{3}-\xi$ be an irreducible polynomial. Let C_{3} be the cyclic group of order 3 .

1. Prove that k_{κ} (the Kronecker construction applied to $\left.\kappa: k_{\kappa}=k[t] /(\kappa(t))\right)$ has a nontrivial automorphism fixing k if and only if k contains an element μ such that $\mu^{3}=1$ and $\mu \neq 1$ (that is, k contains a cube root of unity). What is $\operatorname{Aut}\left(k_{\kappa} / k\right)$?
2. Prove that $k\left[C_{3}\right] \simeq k[t] /\left(t^{3}-1\right)$. Prove that if k contains a cube root of unity μ,

$$
k\left[C_{n}\right] \simeq \prod_{i=1}^{3} k[t] /\left(t-\mu^{i}\right) \simeq \prod_{i=1}^{3} k
$$

Let e_{i} be the element (guaranteed by the Chinese Remainder theorem) $1(\bmod (t-$ $\left.\mu^{i}\right)$) and $0\left(\bmod \left(t-\mu^{j}\right)\right)$ for $i \neq j, e_{i}$. Write these out explicitly (that is, as sums of elements of C_{3}.
3. Prove that a field of characteristic 3 cannot contain a cube root of unity.

Let k be a field containing a cube root of unity, and let K / k be an extension of degree 3 (that is, $\operatorname{dim}_{k} K=3$) with a nontrivial automorphism σ, fixing k elementwise. Then K is a $k[\langle\sigma\rangle]$-module - a module over the group ring over k of the group generated by σ.

1. Let M / L and L / K be field extensions. Prove that $\operatorname{dim}_{K} M=\left(\operatorname{dim}_{L} M\right)\left(\operatorname{dim}_{K} L\right)$.
2. Show that σ has order ≤ 3. Why can't it have order 2 ? Deduce that the order of σ is 3 .
3. Prove that $\operatorname{Aut}(K / k)=C_{3}$; that is, it is generated by σ (hint: K must be gotten by the Kronecker construction on k for a polynomial of degree 3).
4. Prove that if a polynomial f is irreducible in $k[t]$ and has a root in K then it splits completely in K, and has degree 3 (hint: use the automorphism to write down the roots of f).
5. Prove that $e_{i}(K)$ must not be zero for i either 1 or 2 ; thus, there is an element $\xi \in K$ such that $\sigma(\eta)=\mu^{i} \eta$. Prove that $\eta^{3} \in k, \sigma\left(\eta^{2}\right)=\mu^{2 i} \eta^{2}$, and $K=k(\eta)$.

This is called Hilbert's Satz 90 for Cubic Extensions: if k contains a third root of unity, any cubic field extension K / k with a nontrivial automorphism σ is of the form $K[\sqrt[3]{\xi}]$ for some $\xi \in k$. If whenever f were cubic and k contained a cube root of unity, $k[t] /(f)$ had a nontrivial automorphism, we would immediately be able to write down a cubic formula like we wrote down a quadratic formula. However, from problem 3 of section 3, we see that we cannot be so naïve. We will use the structure of $k\left[S_{3}\right]$ to salvage this situation in next week's problem set.

