Math 371, Spring 2013, PSet 4

Aaron Michael Silberstein

March 12, 2013

This problem set will be due Friday, March 22, 2013 at 1 pm in Matti's mailbox. Let k be a field of characteristic $\neq 2,3$ containing a nontrivial cube root of unity. Consider the field extension $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) / k\left(a_{1}, a_{2}, a_{3}\right)$, where $a_{1}=\alpha_{1}+\alpha_{2}+\alpha_{3}, a_{2}=$ $\alpha_{1} \alpha_{2}+\alpha_{2} \alpha_{3}+\alpha_{1} \alpha_{3}$ and $a_{3}=\alpha_{1} \alpha_{2} \alpha_{3}$. We will denote by L the field $k\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ and by K the field $k\left(a_{1}, a_{2}, a_{3}\right)$. By problem set $3, L$ is then an extension of K with $\operatorname{dim}_{K} L=6$.

Recall that S_{3} has a unique normal subgroup A_{3} of order 3 and that S_{3} / A_{3} is of order 2.

1 The Cubic Formula

1. Prove that $Z\left(k\left[S_{3}\right]\right) \simeq k \oplus k \oplus k$ (hint: First determine that $\operatorname{dim}_{k} Z\left(k\left[S_{3}\right]\right)=3$? Once you determine this find three elements $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}$ of $Z\left(k\left[S_{3}\right]\right)$ such that $\epsilon_{i}^{2}=\epsilon_{i}, \epsilon_{i} \epsilon_{j}=$ $\delta_{i j} \epsilon_{i}$ and $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=1$; prove that this is equivalent to giving the direct sum decomposition). Write out these three elements $\epsilon_{1}, \epsilon_{2}$ and ϵ_{3}.
2. Let V be a representation of S_{3}. Prove that there is a renumbering e_{1}, e_{2}, e_{3} of the elements you just wrote down so that:
(a) $e_{1} v=v$ if and only if $\gamma v=v$ for all $\gamma \in S_{3}$.
(b) $e_{2} v=v$ if and only if $\gamma v=v$ for all $\gamma \in A_{3}$ and, $\gamma v=-v$ for all $\gamma \notin A_{3}$.
(c) If $e_{3} v=v$ and $\gamma v=v$ for all $\gamma \in A_{3}$, then $v=0$.
3. Prove that $M={ }_{\text {def }}\left(\epsilon_{1}+\epsilon_{2}\right) L$ is a field of degree 2 over K. Write down an element σ of K, whose square root $\sqrt{\sigma}$ generates M / K. Write down $\sqrt{\sigma}$ in terms of α_{1}, α_{2} and α_{3}.
4. Prove that $\operatorname{Aut}(L / M)=A_{3}$.
5. Find an element τ of M whose cube root $\sqrt[3]{\tau}$ generates K (hint: use e_{1} from Problem Set 3, Section 4, Part 1, Number 2, applied to L). Write down $\sqrt[3]{\tau}$ in terms of α_{1}, α_{2} and α_{3}.
6. Prove that $\left\{1, \sqrt[3]{\tau},(\sqrt[3]{\tau})^{2}, \sqrt{\sigma}(\sqrt[3]{\tau})^{2}, \sqrt{\sigma}(\sqrt[3]{\tau})^{2}, \sqrt{\sigma}\right\}$ form a K-basis of L.
7. Solve for α in terms of this K-basis. Don't forget to use a_{1}, a_{2} and a_{3} if you need to! This is the cubic formula.
