Math 371, Spring 2013, PSet 4

Aaron Michael Silberstein

April 3, 2013

This problem set will be due Friday, April 26, 2013 at 1 pm in Matti's mailbox.

1. Let V be an n-dimensional k-vector space, where k is algebraically closed. Then $\operatorname{End}(V)$ can be identified with the vector space of $n \times n$-matrices with k-coefficients, after choosing a basis B. Let $\operatorname{Funct}(\operatorname{End}(V))$ denote the ring of functions from $\operatorname{End}(V)$ to k, with addition and multiplication given pointwise. Then the basis B gives a ring homomorphism

$$
i_{B}: k\left[x_{11}, x_{12}, \ldots, x_{(n-1) n}, x_{n n}\right] \rightarrow \operatorname{Funct}(\operatorname{End}(V))
$$

given by, if $A: V \rightarrow V$ is written as a matrix w.r.t. the basis B as $\left(a_{i j}\right)$,

$$
i_{B}(f)(A)=f\left(a_{11}, a_{12}, \ldots, a_{(n-1) n}, a_{n n}\right)
$$

We denote the image of i_{B} by \mathcal{O}_{B}.
(a) Prove that i_{B} is an injective map.
(b) Prove that, if B and B^{\prime} are two bases, then $\mathcal{O}_{B}=\mathcal{O}_{B^{\prime}}$. We then call \mathcal{O} the common image of all the i_{B} 's, the ring of algebraic functions on $\operatorname{End}(V)$. By the last problem, \mathcal{O} is isomorphic to a polynomial ring in n^{2} variables.
(c) We say that $f \in k\left[x_{11}, x_{12}, \ldots, x_{(n-1) n}, x_{n n}\right]$ is an invariant polynomial if for all bases B of $V, i_{B}(f)=i_{B^{\prime}}(f)$. We denote by $\mathcal{I} \subseteq k\left[x_{11}, x_{12}, \ldots, x_{(n-1) n}, x_{n n}\right]$ the collection of invariant polynomials.
i. Prove that \mathcal{I} is a ring.
ii. Prove that the coefficients $\beta_{1}, \ldots, \beta_{n}$ of the characteristic polynomial $\operatorname{det}(A-$ $t I$) are elements of \mathcal{I}.
iii. Let $\Delta \subseteq \operatorname{End}(V)$ be the subset of diagonalizable linear transformations with distinct eigenvalues. Prove that a polynomial is invariant when restricted to Δ if and only if it is in the subring T of $k\left[x_{11}, x_{12}, \ldots, x_{(n-1) n}, x_{n n}\right]$ generated by $\beta_{1}, \ldots, \beta_{n}$.
iv. Prove that $\mathcal{I}=T$.
2. BONUS QUESTION: What happens if k is not algebraically closed? What works? What fails?
3. Compute the Galois groups of the splitting fields of the following polynomials over \mathbb{Q} :
(a) $t^{4}+t^{2}+1$.
(b) $t^{4}+t^{2}+2$.
(c) $t^{3}-t+1$.
(d) $t^{4}+2$ (hint: semi-direct products).
4. Compute the character table of the dihedral group D_{5} (we'll go over this in class).
5. Prove that every group of order p^{n} has nontrivial center.

