Math 371, Spring 2013, PSet 4

Aaron Michael Silberstein

April 3, 2013

This problem set will be due Friday, April 26, 2013 at 1 pm in Matti's mailbox.

1. Let V be an n-dimensional k-vector space, where k is algebraically closed. Then $\operatorname{End}(V)$ can be identified with the vector space of $n \times n$ -matrices with k-coefficients, after choosing a basis B. Let $\operatorname{Funct}(\operatorname{End}(V))$ denote the ring of functions from $\operatorname{End}(V)$ to k, with addition and multiplication given pointwise. Then the basis B gives a ring homomorphism

 $i_B: k[x_{11}, x_{12}, \dots, x_{(n-1)n}, x_{nn}] \rightarrow \mathbf{Funct}(\mathrm{End}(V))$

given by, if $A: V \to V$ is written as a matrix w.r.t. the basis B as (a_{ij}) ,

$$i_B(f)(A) = f(a_{11}, a_{12}, \dots, a_{(n-1)n}, a_{nn}).$$

We denote the image of i_B by \mathcal{O}_B .

- (a) Prove that i_B is an injective map.
- (b) Prove that, if B and B' are two bases, then $\mathcal{O}_B = \mathcal{O}_{B'}$. We then call \mathcal{O} the common image of all the i_B 's, the **ring of algebraic functions** on End(V). By the last problem, \mathcal{O} is isomorphic to a polynomial ring in n^2 variables.
- (c) We say that $f \in k[x_{11}, x_{12}, \ldots, x_{(n-1)n}, x_{nn}]$ is an **invariant polynomial** if for all bases B of $V, i_B(f) = i_{B'}(f)$. We denote by $\mathcal{I} \subseteq k[x_{11}, x_{12}, \ldots, x_{(n-1)n}, x_{nn}]$ the collection of invariant polynomials.
 - i. Prove that \mathcal{I} is a ring.
 - ii. Prove that the coefficients β_1, \ldots, β_n of the characteristic polynomial det(A tI) are elements of \mathcal{I} .
 - iii. Let $\Delta \subseteq \operatorname{End}(V)$ be the subset of diagonalizable linear transformations with distinct eigenvalues. Prove that a polynomial is invariant when restricted to Δ if and only if it is in the subring T of $k[x_{11}, x_{12}, \ldots, x_{(n-1)n}, x_{nn}]$ generated by β_1, \ldots, β_n .

- iv. Prove that $\mathcal{I} = T$.
- 2. BONUS QUESTION: What happens if k is not algebraically closed? What works? What fails?
- 3. Compute the Galois groups of the splitting fields of the following polynomials over \mathbb{Q} :
 - (a) $t^4 + t^2 + 1$.
 - (b) $t^4 + t^2 + 2$.
 - (c) $t^3 t + 1$.
 - (d) $t^4 + 2$ (hint: semi-direct products).
- 4. Compute the character table of the dihedral group D_5 (we'll go over this in class).
- 5. Prove that every group of order p^n has nontrivial center.