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CHAPTER 1

Unique Factorization I

by Josh Cooper

(1) Define a UFD (unique factorization domain).
An integral domain is a nontrivial commutative ring R such that ∀a, b ∈

R, ab = 0⇒ a = 0 or b = 0. In other words, there are no zero divisors. For these
definitions, assume R is an integral domain.

A unit is an element u ∈ R such that u has an inverse element u−1 ∈ R, i.e.,
uu−1 = u−1u = 1 (for example, in Z, the only units are ±1).

A non-zero, non-unit element i ∈ R is said to be irreducible if it cannot be
written as the product of two non-unit elements.

A non-zero, non-unit element p ∈ R is said to be prime if ∀x, y ∈ R, p divides
xy implies p divides x or p divides y.

We say that R has existence of factorizations if given a non-zero, non-unit
element r ∈ R we can factor r into irreducible elements γi and a unit a s.t.

r = a

(
n∏
i=1

γi

)
for some non-negative n.

We can now define a unique factorization domain (UFD) as an integral domain
that has existence of factorizations and the factorization is unique (that is unique
up to multiplication by units or rearranging the terms being multiplied).

(2) Show that any PID is a UFD.
Recall the following definitions: I ⊂ R is called an ideal if the following two

properties hold:
(1) i ∈ I, c ∈ R⇒ ca ∈ I .
(2) I is a subgroup of (R,+, 0).
The ideal generated by i1, i2, . . . , in is defined as the smallest ideal containing
these elements. I is said to be principal if it can be expressed as generated by
only one element.
An integral domain R is a principal ideal domain (PID) if every ideal I ⊂ R is
principal.

Theorem 1. If R is a PID then R is a UFD.

Proof. Let R be a PID.

Lemma 2. Let α1R ⊆ α2R ⊆ . . . be an increasing sequence of ideals in R,
then ∃ n s.t. ∀m ≥ n, αmR = αnR.

3



1. UNIQUE FACTORIZATION I 4

Proof. Define
I =

⋃
m

αmR.

Then I is an ideal. To verify this fix xa, xb ∈ I and WLOG xa ∈ αaR and
xb ∈ αbR. Let l = max{a, b} ⇒ αlR ⊂ I (because l ∈ N) and we have xa, xb ∈
αlR ⇒ xa + xb ∈ αlR ⇒ xa + xb ∈ I. By similar reasoning, we have additive
inverses and 0 in I so I is a subgroup of R over addition. Further, fix i ∈ I, r ∈ R.
Say WLOG i ∈ Ic ⇒ ir = ri ∈ Ic ⇒ ri ∈ I. It follows that I is an ideal because
both properties are met.
Now, because R is a PID, by definition, ∃ ω ∈ R s.t. I = ωR ⇒ ω ∈ I ⇒ ∃ n
s.t. ω ∈ αnR ⇒ ωR ⊆ αnR ⊆ I but I = ωR so I = αnR and thus ∀m ≥ n, we
have αmR ⊆ I = αnR and αnR ⊆ αmR (by definition) so we have αmR = αnR
as required. �

Lemma 3. Let r ∈ R be non-zero and a non-unit. r can be factorized into
irreducible elements.

Proof. Assume for contradiction that r cannot be factorized into irreducible
elements. This implies r is not irreducible because otherwise r = r would be the
desired factorization. Thus, reduce r as r = r1r2 where r1, r2 6= r and r1 and
r2 are non-units. Because r cannot be factorized into irreducible elements, r1 or
r2 cannot be factorized into irreducible elements. Say WLOG it is r1. Consider
Ir := rR and Ir1 := r1R. We have Ir ⊆ Ir1 and because r2 is not a unit, Ir1 6= Ir.
We can apply the same process to r1 and continue inductively to produce an
increasing sequence of ideals such that no term is equal to the previous one. This
contradicts Lemma 1.2 so the result follows. �

Lemma 4. Let r ∈ R be irreducible. Then, r is prime.

Proof. By definition, we need to show that if r divides ab then r divides
a or r divides b. Say r divides ab and WLOG that r does not divide a. We
must show that this implies that r divides b. Let I be the ideal generated both
by r and a. Because R is a PID, I is principal. The element that generates
it must be both a factor of r and a, but because r is irreducible and does not
divide a, we must have that I = (1) = R. This implies that ∃ α, ρ such that
αa+ ρr = 1⇒ αab+ ρrb = 1b = b. Trivially, r divides ρrb and because r divides
ab, r must divide αab⇒ r divides αab+ ρrb = b⇒ r divides b as required. �

Lemma 5. Fix k, l ∈ N. Let αi, 1 ≤ i ≤ k and βj , 1 ≤ j ≤ l be irreducibles and
such that α1α2 . . . αk = β1β2 . . . βl. It follows that k = l and ∀ι, ∃ κι s.t. κι is a
unit and βι = κιαι (after reordering).

Proof. Say WLOG k ≤ l.
Case 1: k = 0. This gives 1 = β1β2 . . . βl ⇒ l must be 0 because each βj term is
irreducible and thus are non-invertible by defintion.
Case 2: k = 1. This gives α1 = β1β2 . . . βl. Assume l 6= 1. Then α1 has a proper
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factorization, which is a contradiction because it is irreducible. Thus l = 1 and
α1 = κβ1 for some unit κ.
Case 3: k ≥ 2. For induction, assume that the statement holds for every value
h ≤ k (the base cases are covered in Cases 1 and 2). By Lemma 1.4, we know
that α1 is prime and therefore α1 divides one of the βj terms. Reorder the βj
terms so that α1 divides β1. However, by definition, α1 is not a unit and β1 is
irreducible so we have β1 = α1κ1 where κ1 is a unit. This gives us α1α2 . . . αk =
β1β2 . . . βl = α1κ1β2 . . . βl ⇒ α2 . . . αk = κ1β2 . . . βl. By our inducitve hypothesis,
it follows k = l. Further, ∀ι,∃ κι s.t. κι is a unit and βι = κιαι. �

Fix r ∈ R. By Lemma 1.3, r can be factorized into irreducible elements. By
Lemma 1.5 this factorization is unique up to reordering and multiplying by units
(because after reordering, we can always replace each βι term with κιαι where κι
is a unit).
By definition, it follows that R is a UFD as required. �

(3) Deduce that if k is a field, then k[x] is a UFD.
Let k be a field.

Theorem 6. k[x] is a UFD.

Proof.

Lemma 7. k[x] is a PID.

Proof. Let I be a non-empty ideal of the ring k[x]. Let f(x) be a polynomial
in I of minimal degree. Let g(x) be any polynomial in I. By the division algorithm,
g(x) = h(x)f(x) + a(x) and the degree of a(x) is strictly less than the degree of
f(x). But because f(x) is of minimal degree, we have that a(x) = 0 ⇒ g(x) =
h(x)f(x) ⇒ I is generated by f(x) and thus I is principal (note if I were trivial
then it would be generated by 0 and would be principal). This implies the result.

�

It follows from Lemma 1.7 and Theorem 1.1 that k[x] is a UFD. �

(4) Deduce that Z is a UFD.

Theorem 8. Z is a UFD.

Proof.

Lemma 9. Z is a PID.

Proof. Let I ⊂ Z be an ideal of the ring Z. Say I = {0}. I is now generated
by 0. Otherwise, let s be the smallest positive element of I. Let (s) be the
ideal generated by s alone. Because s ∈ I, we must have that every element
of (s) is also an element of I so (s) ⊂ I. Now, consider t ∈ I. if t = 0 then
t ∈ (s) trivially. Say t 6= 0. We want to show that t ∈ (s). Note that if t ∈ (s)
then −t ∈ (s) so say WLOG that t > 0. By division (consider the Euclidean
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algorithm), we know that t = qs + r with q, s, r ∈ N and 0 ≤ r < s. Note that
s, t ∈ I ⇒ t − sq = r ∈ I ⇒ r = 0 because s is the smallest positive integer in I
and 0 ≤ r < s. Thus, t = sq ⇒ t ∈ (s)⇒ I ⊂ (s)⇒ I = (s). Thus, any ideal can
be generated by a single element, which implies the result. �

It follows from Lemma 1.9 and Theorem 1.1 that Z is a UFD. �

Citation: defintions and guidance were derived from Algebra Abstract and Concrete. Edi-
tion 2.5 by Frederick M. Goodman and Algebra by Michael Artin.



CHAPTER 2

Unique Factorization II

by Xin Xiong

For this section, assume that R is a GCD domain.

Definition 10. Let R be an integral domain. If ∀a, b ∈ R,∃ gcd(a, b) s.t. d | a, d | b iff
d | gcd(a, b). We then see that gcd(a, b) is unique upto associates.

Definition 11. a, b ∈ R are associates in iff ∃u ∈ R× s.t. au = b

Proposition 12. Z[
√
−5] is not a UFD

Proof. Note that 2 · 3 = (1 +
√
−5) · (1 −

√
−5) = 6. It suffices to show that 2, 3

are irreducible in Z[
√
−5] and (1 +

√
−5), (1 −

√
−5) are not associates of 2. Consider

C ⊃ Z[
√
−5]. Let a, b, c ∈ R with (a, b) 6= (0, 0). Then

c

a+ bi
=
c(a− bi)
a2 + b2

and thus a | n iff ā | n. Consider ‖·‖ : C→ R, z = a+ bi 7→ a2 + b2 where i =
√
−1. Note

that ∀n ∈ Z[
√
−5], ‖n‖ ∈ Z. Thus, we have

a, b /∈ Z[
√
−5]×, ab = 2⇒ ‖a‖‖b‖ = 4⇒ ‖a‖ = ‖b‖ = 2

and
c, d /∈ Z[

√
−5]×, cd = 3⇒ ‖c‖‖d‖ = 9⇒ ‖c‖ = ‖d‖ = 3

Since ‖a+b
√
−5‖ = a2+5b2, we may see that there are no such elements. Since ‖1+

√
−5‖ =

‖1−
√
−5‖ = 6, they are not associates of 2. �

Definition 13. Let f = a0 + . . . + anX
n ∈ R[X]. Then cont(f) = gcd(a0, . . . , an)

(unique up to associates).

Note that for the following, all choices yield equivalent results.

Definition 14. f is a primitive polynomial iff cont(f) = 1

Theorem 15 (Gauß’s Lemma). If f, g are primitive polynomials in R[X], then fg is
a primitive polynomial.

Proof. Let f = a0 + . . . amX
m, g = b0 + . . . bnX

n and denote m := deg f, n := deg g.
Obviously, this is true given m = 0 or n = 0. Now assume it is true for (m,n − 1) and
(m − 1, n). We see that fg = a0b0 + (a0b1 + a1b0)X + . . . + ambnX

m+n. Assume that
for some prime p, p | cont(fg). Since p | ambn, we have p | am or p | bn. We then have

7
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p | cont((f −amXm)g) in the first case and p | cont(f(g−anXn)) for the second case, both
of which are impossible due to the inductive hypothesis. �

Definition 16. Let F be the field of fractions over R and let f ∈ F [X] and c ∈ R s.t.

cf ∈ R[X]. Then contF (f) = cont(cf)
c . (again unique upto associates).

Corollary 17. Let f, g ∈ F [X]. Then contF (fg) = contF (f) contF (g).

Proof. Let a, b ∈ F [X] s.t. af, bg ∈ R[X] are primitive. Then cont(fg) = cont(afbg)
ab =

cont(af)
a · cont(bg)

b = cont f cont g. Note that f ∈ R[X] iff contF (f) ∈ R. �

Corollary 18. Let f ∈ R[X]. Then f reducible in R[X] iff reducible in F [X].

Proof. Reducible in R[X] implies reducible in F [X] is trivial. For the other direction,

let c = cont f and g = f
c . Assume f = pq for some p, q ∈ F [X]. Then we have g = p

c · q and

1 = cont
(p
c

)
cont(q) and therefore cont

(p
c

)
= x, cont(q) = 1

x for some x ∈ F [X]. Setting
p′ = p

cx , q
′ = xq, we have p′, q′ ∈ R[X] and f = cp′q′. �

Proposition 19. F [X] is a UFD.

Proof. We will show that F [X] is a PID. By §1, we then have F [X] is UFD. Let I
be an ideal and let f ∈ F [X] be an non-zero element of least degree. If f is a constant, we
are done since F is a field. Assume otherwise. Now let g ∈ I. We then have g = af + r
for some a, r ∈ F [X] where deg(r) < deg(f).Since f is minimal, we have r = 0. �

Proposition 20. Let R be a UFD. Then R is a GCD domain.

Proof. Let a = uα1 . . . αm, b = vβ2 . . . βn ∈ R where u, v ∈ R× and αi, βi irreducible
and (αi, βi) are associates for 1 ≤ i ≤ t where t ≤ m,n. We then have gcd(a, b) =
α1 . . . αt. �

Theorem 21. Let R be a UFD. Then R[X] is a UFD.

Proof. Let f ∈ R[X]. We then have a unique factorization f = cf1 . . . fn in F [X]
where c = cont(f) and cont(fi) = 1. By Gauß’s lemma, cf1 . . . fn is a unique factorization
in R[X]. �



CHAPTER 3

Gauß’ Lemma

by Zachary Goldsmith

1. Statement of Gauß’ Lemma

Let h ∈ Z[x] be monic, and let h = fg where f, g ∈ Q[x] and f monic. Then, f, g ∈ Z[x].

2. Proof

2.1. g is a monic polynomial. Let:

(1) h = amx
m + am−1x

m−1 + ...+ a1x+ a0

(2) f = bnx
n + bn−1x

n−1 + ...+ b1x+ b0

and

(3) g = cpx
p + cp−1x

p−1 + ...+ c1x+ c0

Since h = fg, n+p = m and am = bncp. Therefore, cp = am
bn

. Since h and f are monic,
am = bn = 1. So, cp = 1 and g is monic.

2.2. f and g actually have coefficients in Z. Now, choose λ to be the smallest
positive integer such that λf has integer coefficients. Note that the greatest common
divisor of the coefficients of λf is 1. Similarly, choose ε to be the smallest positive integer
such that εg has integer coefficients. Again, the gcd of the coefficients of εg is 1. Therefore:

(4) λf, εg ∈ Z[x]

Claim: λ = ε = 1
Assume λε > 1. Pick q such that q is prime and q|(λε). Now consider:

(5) λεh = (λf)(εg)

Now reduce this statement modulo q,

(6) 0 ≡ (λf)(εg)

Since Z/qZ is an integral domain, so is Z/qZ[x]. Then,

(7) λf ≡ 0 or εg ≡ 0

Therefore,

(8) q|bi ∀ 0 ≤ i ≤ n or q|cj ∀ 0 ≤ j ≤ p
9
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In other words, q divides all of the coefficients of f or divides all of the coefficients of g.
⇒⇐ This is a contradiction to the assumption that λε > 1.

Thus, the claim that λ = ε = 1 is true and

(9) f, g ∈ Z[x]



CHAPTER 4

Maximal Orders in Quadratic Number Fields

by Assaph Aharoni

(1) Define an algebraic integer, and if R ⊆ S define the integral closure of R in S.
Prove that the integral closure of R in S is a ring.

Def: Let K be a finite field extension of Q. An algebraic integer is a number
in K that is a root of a monic integer polynomial. That is, α ∈ K is an algebraic
integer if there exists f(x) ∈ Z[x] such that f(x) = xn + an−1x

n−1 + · · · + a0,
n ≥ 1, and f(α) = 0.

Def: Let R and S be rings with R ⊆ S. We say s ∈ S is integral over R if it
is a root of a monic polynomial over R. That is , if n ≥ 1 and ri ∈ R such that
sn+ rn−1s

n−1 + · · ·+ r1s+ r0 = 0. In other words, if there exists f(x) ∈ R[x] such
that f(x) monic and f(s) = 0. The set of elements of S that are integral over R
is called the integral closure of R in S.

We begin by proving the following lemma:

Lemma (1): For R and S defined as above, s ∈ S is integral over R if and only
if R[s] is finitely generated as an R-module.

Proof:
“=⇒”: Given s is integral over R, we want to show there exist b1, . . . , bm ∈ R[s]

such that for all f(s) ∈ R[s] there exist r1, . . . , rm ∈ R with f(s) =
∑m

i=1 ribi. We
know that for some n ≥ 1 and r′i ∈ R:

sn + r′n−1s
n−1 + · · ·+ r′1s+ r′0 = 0 =⇒ sn = −r′n−1s

n−1 − · · · − r′1s− r′0

Let f(s) ∈ R[s] be given by f(s) =
∑N

i=0 cis
i with ci ∈ R and N > n. We can

reduce the degree of f(s) by 1 by making a substitution for sn in the following
manner:

f(s) = cNs
N−nsn + · · ·+ c0 = cNs

N−n(−r′n−1s
n−1 − · · · − r′0) + · · ·+ c0 =

= c′N−1s
N−1 + · · ·+ c′0

This process can be repeated until the degree of f(s) is down to N − 1.

f(s) = c′′n(−r′n−1s
n−1 − · · · − r′0) + · · ·+ c′′0 = rn−1s

n−1 + · · ·+ r0

11
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Therefore, if we let b1 = 1, b2 = s, . . . , bm = sn−1, then we have shown that any
element of R[s] can be generated by linear combinations in R of these bi’s, i.e.
f(s) =

∑m
i=1 ribi. Since the number of bi’s is finite, R[S] is finitely generated as

an R-module.

“⇐=”: Given that R[s] is finitely generated, we want to show that s is integral
over R. Let {b1, b2, . . . , bm} be a generating set for R[s], where bi = fi(s) for some
fi ∈ Z[x]. Let n be an integer such that n > deg(bi) for i = 1, . . . ,m. Since sn is
an element of R[s], we know that we can write it using the generating set (rj ∈ R):

sn =
m∑
j=1

rjbj =⇒ sn −
m∑
j=1

rjfj(s) = 0

Let us define the polynomial g(x) = xn −
∑m

j=1 rjfj(x). f(x) is monic because
we defined all of the degrees of the elements in the generating set to be less than
n and the xn coefficient is 1, and it evaluates to 0 for the input s. Therefore, we
have found g(x) ∈ R[x] such that g(x) is monic and g(s) = 0. Therefore, s is
integral over R.

Claim: The integral closure C of R in S is a ring.

Proof: We proceed by proving that C is a subring of S. We must show C is
closed under addition and multiplication. That is, for x, y ∈ C =⇒ x ± y ∈ C
and xy ∈ C. First, by Lemma (1) we know that both R[x] and R[y] are finitely
generated as R-modules. Let 1, x, x2, . . . , xn−1 span R[x] and 1, y, y2, . . . , ym−1

span R[y]. It must be that R[x, y] is also finitely generated by the elements xiyj

for i ≤ n, j ≤ m. Now consider the ring R[x ± y] which consists of elements∑N
i=0 ri(x ± y)i. Clearly, all of the elements of R[x ± y] are contained in R[x, y],

hence R[x ± y] is a submodule of R[x, y] and is also finitely generated. Since
R[x ± y] finitely generated, we have by Lemma (2) that x ± y is integral over
R, i.e. x ± y ∈ C. We make a similar argument that R[xy] is a submodule of
R[x, y] and hence is also finitely generated, implying that xy is integral over R,
i.e. xy ∈ C.

(2) Let K be a finite extension of Q. Prove that the set OK of algebraic integers in
K is a subring of K and that the map OK ⊗Z Q→ K is an isomorphism.

Claim: The set OK is a subring of K.

Proof: OK is the set of elements α such that there exists a monic f(x) ∈ Z[x]
for which f(α) = 0. The integral closure of Z in K is the set of elements b ∈ K
such that b is integral over Z, i.e. there exists a monic polynomial f(x) ∈ Z for
which f(b) = 0. Clearly, the set of algebraic integers and the integral closure of Z
in K are equivalent. By the proof of question 1 above, the integral closure of Z
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in K is a ring, which implies that OK is a ring. Since OK ⊆ K, it is a subring of K.

Before discussing our second claim, we first prove the following lemma:

Lemma (2): For all β ∈ K, there exists an m ∈ Z such that mβ ∈ OK .

Proof: Consider the polynomial f(x) ∈ Q[x] for which β is a root. Note that f(x)
must exist, otherwise 1, β, β2, . . . would be linearly independent and K would be
infinitely dimensional. Let f(x) =

∑n
i=0 qiβ

i, where n ≥ 1 and qi ∈ Q. Let l be
the lowest common multiple of all the ri’s.

f(β) = 0 =⇒ qnβ
n + qn−1β

n−1 + qn−2β
n−2 + · · ·+ q1β + q0 = 0

lqnβ
n + lqn−1β

n−1 + lqn−2β
n−2 + · · ·+ lq1β + lq0 = 0

pnβ
n + pn−1β

n−1 + pn−2β
n−2 + · · ·+ p1β + p0 = 0

By multiplying both sides by l, we turn the coefficients into integers, i.e. pi ∈ Z.
Now, we multiply both sides again by pn

n−1:

(pnβ)n + pn−1(pnβ)n−1 + pn−2pn(pnβ)n−2 + · · ·+ p1pn
n−2(pnβ) + p0pn

n−1 = 0

(pnβ)n + cn−1(pnβ)n−1 + cn−2(pnβ)n−2 + · · ·+ c1(pnβ) + c0 = 0

Let g(x) ∈ Z[x] be such that g(x) = xn + cn−1x
n−1 + · · · + c1x + c0. The pi’s

multiplied all yield integers, hence ci ∈ Z. Therefore, we have found a monic
polynomial g(x) ∈ Z[x] such that g(pnβ) = 0, i.e. pnβ is an algebraic integer. If
we let m = pn, we have shown that there exists m ∈ Z such that mβ ∈ OK .

Claim: The map OK ⊗Z Q→ K is an isomorphism.

Proof: Let ϕ : OK ⊗Z Q→ K,α⊗Z q 7→ αq. To prove that ϕ is an isomorphism,
we will argue that it is surjective and that the dimension of the domain is equal
to the dimension of the codomain.

To prove ϕ is surjective, we have to show that any element β ∈ K can be
written as a product of α ∈ OK and q ∈ Q. By Lemma (2), β can be written as
α = mβ for m ∈ Z, α ∈ OK . Since K is a field, we can write β = α 1

m , where
1
m ∈ Q. Therefore, we have shown that ϕ is a surjection.

Let dimQK be n. If we can show that the dimension of OK⊗ZQ ≤ n, we argue
that ϕ is an isomorphism. In question 3, we prove that OK is finitely generated
as a Z-module and that its rank is equal to dimQK = n. The tensor product map
will have dimension equal to the product of OK ’s rank and Q’s dimension over
itself, i.e. dimQ(OK ⊗Z Q) = rank(OK)dimQ(Q) = n · 1 = n.

Now, since the tensor product is just a linear map, it preserves injectivity in
each dimension. Therefore, since ϕ is surjective and the dimensions of its domain
and codomain are equal, it must be the case that it is a bijection, i.e. ϕ is an
isomorphism.

Note: Alternatively, one could prove the finite dimensionality by computing the
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rank of the tensor product of R[x] with R[y] and noticing that it is finite.

(3) Prove that OK is finitely generated as a Z-module.

Def: Let α ∈ K. We define the linear map Tα : K → K,x 7→ αx. We define the
trace as the sum of the elements on the diagonal of the matrix representation of
Tα. That is, TrQ(Tα) := TrK/Q(α) ∈ Q. Note that the trace is independent of the
representation and is well-defined.

Claim: OK is finitely generated as a Z-module.

Proof: Let α1, α2, . . . , αn be a basis for K over Q. Using Lemma (2) from
above, we know that we can multiply the αi’s by an integer and get a new basis
β1, β2, . . . , βn such that each βi ∈ OK . Consider the following map ϕ:

ϕ : K → Qn, x 7→
(
TrK/Q(xβ1), . . . ,TrK/Q(xβn)

)
We claim that ϕ is injective. Suppose it is not, i.e. ker(ϕ) 6= {0}. Let nonzero
y ∈ K be such that ϕ(y) = 0, i.e. TrK/Q(yβi) = 0 for i = 1, . . . , n. Notice the
following:

n = TrK/Q(1) = TrK/Q(yy−1)

The first equality holds because the map T1 : K → K,x 7→ x has trace n since its
matrix representation is simply the identity n × n matrix. The second equality
holds because K is a field, so it has multiplicative inverses. Now, using our basis
for K, we write y−1 =

∑n
i=1 riβi where the ri ∈ Q.

TrK/Q(yy−1) = TrK/Q

(
y

n∑
i=1

riβi

)
= TrK/Q

(
n∑
i=1

yriβi

)
=

n∑
i=1

riTrK/Q(yβi) = 0

We can move the trace inside the summation and factor out the ri because the
trace is a linear map. The final step comes from our assumption that ϕ(y) = 0.
We have a clear contradiction: n = 0, even though we assumed that K is a finite
field extension of Q. Therefore, it must be the case that ϕ is indeed injective.

Now we look at the behavior of ϕ under OK , a subset of the domain. In ϕ
under OK , α is mapped to a tuple of TrK/Q(αβi). Each αβi ∈ OK because it
is a product of two algebraic integers, and OK is a ring according to question
2. We use without proof the fact that if α ∈ OK , then TrK/Q(α) ∈ Z. Hence,
each TrK/Q(αβi) ∈ Z. Therefore, the image of ϕ under OK is Zn ⊆ Qn. By our
argument above, ϕ is injective, implying that OK is mapped injectively into Zn.
We can view Zn as a finitely generated abelian group and OK as a subset of it, so
OK must be finitely generated as a Z-module. In addition, since it is an n-tuple
that depends on the basis of K and β1, β2, . . . , βn are linearly independent, OK
has rank at least n. Since OK injects into Zn, it has rank at most n. By the two
previous statements, OK must have rank exactly n.



CHAPTER 5

The Algebraic Integers in a Quadratic Number Field

by Benjamin Wang

Let K = Q(
√
d). We define

(10) Od = {α ∈ K | α an algebraic integer} .

There is (a non-unique!) α ∈ K such that Od = Z[α]. Prove that we may take α = 1+
√
d

2

if d ≡ 1 (mod 4) and
√
d otherwise.

Proof: In this proof, we want to show that ∃α ∈ K = Q(
√
d) such that Od = Z[α];

that is, Od = {a+ bα | a, b ∈ Z}.
To break down this proof, I will show two things:

(1) I will show that the fraction field Q(
√
d) is isomorphic to Q[

√
d]. This will give

us information that allows us to make generalizations about any α ∈ Q(
√
d).

(2) Next, I will show, using Gauß’ Lemma, that for arbitrary α ∈ Q[
√
d] with the

corresponding minimal polynomial fα, α ∈ Od iff fα has coefficients in Z.

At this point, if I show these two things, then I only need to show the following equal-

ity: {α′ ∈ K|fα′ ∈ Z} = {a + bα|a, b ∈ Z[x] where α = 1+
√
d

2 if d ≡ 1 (mod 4) and
√
d

otherwise}

First, Q(
√
d) is isomorphic to Q[

√
d].

Q is a field =⇒ Q is a ring =⇒ Q[
√
d] a ring. Since polynomial rings are always

principal ideal domains, we can now check whether or not Q[
√
d] is a field. That is, we

must show that ∀α ∈ Q[
√
d] and α 6= 0,∃α−1 s.t. α · α−1 = 1.

Let g ∈ Q[x]. Then, g := q · fα + r where r is the remainder polynomial. Substitute x
for α, and we see that g(α) = r(α), since fα(α) : = 0. Since f is irreducible, if r 6= 0, then
g.c.d.(f, r) = 1 by definition of irreducible. Therefore, ∃g′, h′ ∈ Q[x] s.t. g′ fα + h′ r = 1.
Evaluating at α yields gα fα + hα rα = 1 =⇒ hα rα = 1 =⇒ rα = gα has an inverse in
Q[
√
d]. Therefore, Q[

√
d] is a field. Then, by definition of a fraction field, Q[

√
d] = Q(

√
d).

To conclude this portion–since Q[
√
d] is isomorphic to Q[x]/(x2 − D)–we now know that

by the division algorithm (and Homework 1) that α ∈ Q[
√
d] = a+ b

√
d for a, b ∈ Z.

Now, we will prove the second step. Let α ∈ Q(
√
d) have minimal polynomial fα.

Theorem: Od := {α ∈ Q(
√
d)|α an algebraic integer} = {α ∈ Q[

√
d]|fα ∈ Z[x]}

15
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”⊇” By definition of α being an algebraic integer.
”⊆” Gauß’ Lemma, as so brilliantly presented by Zachary Goldsmith, states exactly this.

Now all we must show is that (Od =){α′ ∈ K|fα′ ∈ Z[x]} = {a + bα|a, b ∈ Z where

α = 1+
√
d

2 if d ≡ 1 (mod 4) and
√
d otherwise}(= Z[α]).

”⊇” This direction is trivial, by definition. (a, b, α ∈ Od)
”⊆” For arbitrary α′ ∈ K, let α′ = a′ + b′

√
d where a′, b′ ∈ Q.

If b′ = 0, then the minimal polynomial is x − α′. In this simple case, the minimum
polynomial has integer coefficients for any a′ ∈ Z. We can observe trivially that if d ≡ 1

(mod 4), we can take α = 1+
√
d

2 and observe that α′ has the forma + bα with a, b ∈ Z by

letting a = a′ and b = 0. Similarly trivial, if d 6≡ 1 (mod 4), then we can take α =
√
d, let

a = a′ and b = 0.
Now, suppose b′ 6= 0. Then, α′ can be rewritten as j+k

√
d

l where j, k, l ∈ Z and

g.c.d(j, k, l) = 1. Given this α′, the minimum polynomial can be expressed as x2 + px+ q,

where p = −2j
l , q = j2−k2d

l2
. We get this by noticing that (x− j+k

√
d

l ) · (x− j−k
√
d

l )–where
j, k, l ∈ Z such that p, q ∈ Q−−is a second degree polynomial (the lowest such polynomial)
with α as a root and coefficients in Q.

If l = 1, then any j, k ∈ Z works. Then j+k
√
d ∈ a+ bα where α =

√
d, a = j ∈ Z, b =

k ∈ Z or where α = 1+
√
d

2 , a = −j, b = 2k.

If l > 1, then l = 2 in order that p = −2j
l ∈ Z. From q = j2−k2d

l2
, q can only be integer

when g.c.d(j, l)2|k2d =⇒ g.c.d(j2, l2)|k2d (WHY? because j
l and k2d

l must be integers.)
Since g.c.d(j, k, l) = 1, g.c.d(j, l)|d. Since d is square-free,

(11) g.c.d.(j, l) = 1.

Since l = 2 and q must be in Z, this implies 4|(j2 − k2d) =⇒
(12) k2d = j2 (mod 4).

By (2), g.c.d(j, 2) = 1 =⇒ j must be odd. Similarly for k from (3). Therefore, d ≡ 1
(mod 4). Conversely, if we assume d ≡ 1 (mod 4), j, k odd, l = 2, p, q ∈ Z, then we work

our way backwards to see that j+k
√
d

2 is an algebraic integer. Thus, d ≡ 1 (mod 4)⇔ j+k
√
d

2
is an algebraic integer.

Note then that we can take α = 1+
√
d

2 , and for any j+k
√
d

2 , we can express it in terms

of a + bα where a, b ∈ Z. Namely, we can let b = k ∈ Z and a = j−k
2 ∈ Z. Therefore, we

have shown that ∃α ∈ K such that Od ⊆ Z[α]. Namely,

• α = 1+
√
d

2 if d ≡ 1 (mod 4)

• α =
√
d otherwise. (Notice that d cannot be 0 (mod 4) (or 4 (mod 4)). If it were,

then we know that d would not be square free.). �



CHAPTER 6

Wedderburn’s Theorem

by Archit Budhraja

1. Wedderburn’s Theorem

Prove that any possibly noncommutative, finite ring R in which every nonzero element
r ∈ R has a multiplicative inverse, (that is, there is r′ ∈ R such that rr′ = r′r = 1), is
commutative.

2. Problem Statement

There is an equivalent restatement of Wedderburn’s Theorem, which we will state in
this section. But before that we must define certain terms required for this restatement.

Definition: A division ring, also called a skew field is a non-trivial ring in which
every non-zero element r has a multiplicative inverse, i.e., an element x with rx = xr = 1.

So, from the above definition it is clear that the finite ring R in the statement of Wedder-
burn’s Theorem is in fact a finite division ring. With this is mind, we can now restate the
theorem as follows:

Prove that multiplication in a finite division ring is necessarily commutative.

3. Proof

Let K be a finite division ring.

Let C(x) be the centralizer in K of a nonzero element x.

Definition: The centralizer of a ring R is defined to be

(13) C(R) = {r ∈ R |rs = sr for all s ∈ R} .

Definition: The centralizer of an element x ∈ R is defined to be

(14) C(x) = {r ∈ R |rx = xr} .

Now, we know that C(x) contains 0 and 1 and so it is trivial to establish that C(x) is a

17
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subring of K, which contains the reciprocals of all its nonzero elements.

Let C be the center of K.

Definition: The center C of K consists of those elements of K which commute with
every element of K.

So, from the above definition we know that

(15) C =
⋂
x∈R

C(x)

In particular, all elements of C commute, 0 and 1 are in C and so C is in fact a field of
order q. Furthermore, we can also see that K and C(x) are vector spaces over C, with
dimensions n and n(x) respectively.
Consider the multiplicative group formed by the qn-1 nonzero elements of K. This group
has center (C - {0}), which is of order q-1. We can then apply the conjugacy class formula
to this group, but first we need to talk about what exactly the formula is.

3.1. Conjugacy class formula. Definition: Two elements x and y of a group G
are said to be conjugates when there exists an inner automorphism from one element to
the other, that is, when there is an element a of G such that ax = ya.

So defined, conjugacy is in fact an equivalence relation (it is reflexive, symmetric and
transitive). The conjugacy class of an element x is the set of all elements of G which are
conjugate to it. Every element is in one and only one of those classes since equivalence
classes always form such a partition.

Furthermore, if x is in the center of G, denoted Z(G), then the conjugacy class of x
is simply x (a singleton set). More generally, it is the case that the number of elements
that are conjugate to x is equal to the index in G of the centralizer C(x). That number is
usually denoted [ G : C ].

Tallying the conjugacy classes with more than one element by assigning each a different
index i, we obtain the conjugacy class formula:
|G| = |Z(G)| +

∑
i [ G : Ci ]

The second term is an empty sum (equal to zero) when G is commutative.

Now, applying the conjugacy class formula to the group we discussed above, we get
qn-1 = q-1 +

∑
i (qn-1)/(qni-1)

Finally, to establish that multiplication is commutative, we need to prove that this above
relation implies that n = 1, that is, the summation on the right-hand side must be empty.
For this, we can utilize Zsigmondy’s Theorem.

Zsigmondy’s Theorem: If 1 ≤ b < a, and a and b are relatively prime, then an -
bn has at least one primitive prime factor with the following two possible exceptions:
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(1) 26 - 16

(2) n = 2 and a + b is a power of 2

Proof of Zsigmondy’s Theorem: For a proof of this theorem, please refer to “Zsig-
mondy’s Theorem” by Lola Thompson at http://bit.ly/13EGlq1.

Clearly the special cases of Zsigmondy’s theorem (as stated above note) don’t apply: Sup-
pose n = 2. Since every term in the right-hand sum must be (q2-1)/(q-1) = (q+1), we
see that it left-hand side is divisible by (q+1) but the right-hand side is not, which is a
contradiction. Suppose q = 2 and n = 6. The class equation then reads

64 - 1 = 2 - 1 +
∑

i (26-1)/(2ni-1)

But, each term of the summation must equal (26-1)/(22-1) = 21 or (26-1)/(23-1) = 9
and so the class equation then becomes

62 = 21a + 9b

Now, we see that it right-hand side is divisible by 3 but the left-hand side is not, which is
a contradiction.

Therefore, from Zsigmondy’s theorem we can conclude that there is a prime p which
divides qn-1 but not qm-1 for any positive value of m less than n (if any). Since such a p
necessarily divides q-1 because it divides all other terms in the above equation, it must be
the case that n = 1.



CHAPTER 7

The Derivative and Inseparable Polynomials

by Seth Koren

Let f ∈ k[x], where k is a field. Define the derivative D : k[x] → k[x] to be the unique
k-linear map which satisfies

(1) If c ∈ k then Dc = 0.
(2) If f, g ∈ k[x] then D(fg) = fDg + gDf.
(3) Dx = 1.

1. Roots of the Derivative

Let (x− α)|f
To prove: (x− α)2|f ⇔ (Df)(α) = 0
Proof:

1.1. “⇒”. (x− α)2|f
⇔ f = (x− α)2g with g ∈ k[x]
⇒ Df = gD(x− α)2 + (x− α)2Dg
⇒ Df = 2(x− α)g + (x− α)2Dg
⇒ (Df)(α) = 2(α− α)g + (α− α)2Dg = 0

1.2. “⇐”. (Df)(α) = 0
⇔ (x− α)|Df
⇔ Df = (x− α)g for some g ∈ k[x]
By proposition, (x− α)|f , so f = (x− α)h for some h ∈ k[x]
So we know Df = hD(x− α) + (x− α)Dh = h+ (x− α)Dh
Thus (x− α)g = h+ (x− α)Dh
⇔ g = h

(x−α) +Dh

Since 1
(x−α) /∈ k[x],(x− α)|h⇒ h = (x− α)l for some l ∈ k[x]

So f = (x− α)h = (x− α)(x− α)l
Thus (x− α)2|f

�

20
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2. Polynomials in xchar(k)

Let k be a field of characteristic p.
Let f be a polynomial with terms of degree only nonzero powers of p and zero; so

f = a0 +
n∑
i=1

aix
pi .

To prove: If an element α ∈ k′ , an extension of k, satisfies f(α) = 0 , then (x− α)2|f

Proof:
Df = D(a0) +

∑n
i=1 aiD(xp

i
)

Df =
∑n

i=1 aip
ixp

i−1

Since p = 0, Df = 0 identically
So for any root α of f in k′, (Df)(α) = 0
From 1, since (x− α)|f and (Df)(α) = 0, (x− α)2|f
Since α was any root of f , any root of f is a multiple root.

�

3. Additivity of Polynomials in Finite Fields

To prove: If f is a polynomial with terms of degree only powers of p; so

f =

n∑
i=0

aix
pi .

then f is additive, that is

f(x+ y) = f(x) + f(y).

Proof:
(x+ p)p =

∑p
i=0

(
p
i

)
xp−iyi where

(
p
i

)
= p!

i!(p−i)! by binomial theorem

For i = 0 or i = p,
(
p
i

)
= 1

If p is prime, then since 0 < i < p, neither i! nor (p− i)! divide p.
But

(
p
i

)
is always an integer.

So p|
(
p
i

)
when p prime and 0 < i < p

Thus, in a field of characteristic p, (x+ y)p = xp + yp

So f(x+ y) =
∑n

i=0 ai(x+ y)p
i

=
∑n

i=0 ai(x
pi + yp

i
) = f(x) + f(y) �

4. Testing Polynomial Irreducibility in Finite Fields

Let f ∈ Fq[x], deg(f) = n, with p1, ..., pk the distinct prime divisors of n.

To prove: f is irreducible ⇔ 1© gcd(f, xq
n
pi − x) = 1 ∀pi, and 2© f |(xqn − x)

Proof:
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4.1. “⇒”. By assumption, f is irreducible.
For every root α of f(x) = 0, α is in Fqn ' Fq/f(x), which is n-dimensional over Fq.
Fqn\{0} is a multiplication group of order qn − 1, so by Lagrange’s theorem the order of

every element divides qn − 1.
So xq

n−1 = 1⇒ xq
n − x = 0 ∀x ∈ Fqn

Therefore αq
n − α = 0, that is, α is a root of xq

n − x = 0, so (x− α)|(xqn − x)
Additionally, f has no multiple roots. We already have f irreducible, so gcd(f, g) 6= 1 ⇒
f |g ⇒ deg(g) ≥ deg(f) or g = 0. But deg(Df) < deg(f), so gcd(f,Df) = 1 unless Df = 0.

However, if Df = 0, f is of the form seen in 2, above: f = a0 +
∑n

i=1 aix
pi . Since xp = x

in char(p), f = a0 +
∑n

i=1 aix, and then x = −a0∑n
i=1 ai

is a root of f in Fp, which contradicts

f irreducible in Fp. Therefore, f has no multiple roots.
Thus, since (x− α)|(xqn − x) for every root α of f(x), we have 2© f |(xqn − x)
Now, since f is irreducible of degree n, Fqn is the splitting field of f , and it therefore has

no roots in any field Fqm with m < n. Since n
pi

integral < n, (x − α) - (xq
n
pi − x) for any

root α, thus 1© gcd(f, xq
n
pi − x) = 1 ∀pi

4.2. “⇐”. By assumption, 1© gcd(f, xq
n
pi − x) = 1 ∀pi, and 2© f |(xqn − x)

Since f |(xqn − x), (x− α)|(xqn − x) for any root α, so all roots of f are in Fqn
Assume f has an irreducible factor f1, of degree m < n.
The roots of f1 are in Fqm , so Fqn is a vector space over Fqm , and thus m|n.

Therefore m| npi for some pi, so all roots of f1 are in F
q

n
pi

. But then f1|(xq
n
pi −x), and since

f1|f , then f1|gcd(f, xq
n
pi − x), which contradicts 2©.

Thus f is irreducible.
�



CHAPTER 8

Additive Polynomials

by Brandt Wong

Let k be a field of characteristic p. Prove that if f ∈ k[x] is not a polynomial with terms
of degree only powers of p, then f is not additive. (Hint: reduce to Fp).
Note that in the finite field case, there are a number of polynomials such that P (x+ y) =
P (x)+P (y) holds for all of the elements of the field. For example, over F5, P (x) = x6−x2

is additive because it vanishes over the field in question. But this polynomial is not additive
over the algebraic closure of F5. In this write up, we will find the general form of an additive
polynomial over k and all field extensions of k, and then proceed to describe the general
form of all additive polynomials over just the prescribed field, k.

First, we define an additive polynomial.
Definition: An additive polynomial is a polynomial P ∈ k[x], such that, for x, y ∈ k,

over any extension of k,

(16) P (x+ y) = P (x) + P (y).

Key Observations: Q(x, y) = P (x + y) − P (x) − P (y) = 0 over k for an additive
polynomial, P (x).

Note the difference between Q(x, y) as an expression evaluated at points in a field and
as a polynomial function of variables.

First we want to find the general form of an additive polynomial over a field k. We
want to show that an additive polynomial can be written as the sum of polynomials that
vanish over k and polynomials that are additive over k and all field extensions of k.

Proof: First we examine the case where k is infinite. Suppose Q(x, y) is a polynomial
where x and y are variables. We seek to find the kernel of the following map and we want
to show that it is trivial.

k[x, y]→ Funct(k × k, k)
That is, we want to show that if

∑
aijx

iyj is 0, then aij are all 0. But we can reduce
this to a one variable case if we fix y. Then we can get fy(x) =

∑
aijy

j = 0. If k is an
infinite field, then all aij=0 by a simple counting argument:

∑
aijy

j = 0 can only have
finitely many zeros and thus cannot be zero over every element in the field. Thus, we need∑
aijy

j = 0 to be identically 0. So the kernel of the map is indeed 0.
Now we examine the finite field case.
Let k be the finite field, Fq where q = pd. If P vanishes over Fq, we want to show

that P must then be a multiple of xq − x. First we note that there is a bijection between
polynomials of degree less than q and functions from Fq to Fq. Moreover, this is also a

23



8. ADDITIVE POLYNOMIALS 24

p-linear map. We can see that the map is bijective because there are qq elements in each
set and the map is injective, and therefore the map is also surjective. Since this map is
bijective, we know that the kernel is trivial.

We know that xq − x vanishes over Fq. We can establish another bijective mapping
between the quotient ring over xq−x and functions from Fq to Fq. Note that all polynomials
will have remainders of degree less than q. Therefore, all polynomials over Fq can be
mapped to their remainders when divided by xq − x, and these remainders are mapped
to functions from Fq to Fq. Thus, the only polynomials that vanish are the ones that are
multiples of xq − x.

For any additive polynomial, P (x), we can write

(17) P (x) = h(x)(xq − x) + r(x)

where the first part is a multiple of xq − x and therefore vanishes over Fq. We want

to show that r(x) is such that r(x) is additive over k and its extensions. There are (qd)d

p-linear maps between Fq and Fq. Below we confirm that the only polynomials over k and

all of its extensions are polynomials with terms of degree powers of p. There are (qd)d of
these as well. We know that r(x) is a p-linear map and we know that all p-linear maps
correspond to additive polynomials. So r(x) is additive as well over k and all its extensions.

Therefore, we can now say that the general form for any additive polynomial over any
field k, is the sum of additive polynomials over k and all field extensions, (the polynomials
of the form described), and polynomials that vanish over the field, k. We proceed to find
the general form of all additive polynomials over all field extensions of k.

Show that all additive polynomials over k and any extension of k have terms of degree only
powers of p.

Proof: Suppose P (x) = xj is an additive monomial. Then for j = 1, P (x+y)−P (x)−
P (y) is true trivially. Suppose j > 1. Then P (x + y) − P (x) − P (y) has a term, jxj−1y.
This will be identically zero only if j = 0 in characteristic p, that is, j = 0 (mod p). So j
must be a multiple of p.

Then we can write j = pkm where m does not divide p. If P (x) = xp
km is additive,

then (xp
k

+ yp
k
)m − (xp

k
)m − (yp

k
)m = 0. This can only happen if m = 1, or, by the

preceding reasoning, if m itself is a power of p, which would still mean j is a power of p.
So any additive monomial must have degree a power of p. Moreover, any sum or

multiple of an additive monomial is also additive. It remains to show that a sum of
non additive monomials is also not additive, that is, the linear combinations of additive
monomials are the only additive polynomials.

Let P (x) = c1P1(x) + c2P2(x) + ...cnPn(x), where each Pi(x) = xji is a monomial and
at least one Pi(x) is not additive.

Then
P (x + y) − P (x) − P (y) = (c1P1(x + y) + c2P2(x + y) + ...cnPn(x + y)) − (c1P1(x) +

c2P2(x) + ...cnPn(x))− (c1P1(y) + c2P2(y) + ...cnPn(y)) = c1(P1(x+ y)−P1(x)−P1(y)) +
c2(P2(x+ y)− P2(x)− P2(y)) + ...cn(Pn(x+ y)− Pn(x)− Pn(y))
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For each Pi(x) = xji that is not additive (ji is not a power of p), then there will be a
term jix

ji−1y in the sum, and since all Pi(x) are distinct, then there are no like terms to
cancel out this non-zero term. So P (x + y) − P (x) − P (y) does not equal 0 if at least
one of the monomials is non-additive, and the desired result is proven. So for a field k of
characteristic p, these are the only additive polynomials over k and all extensions of k.



CHAPTER 9

Artin-Schreier Extensions

by Himesh Lad

Let k be a field of characteristic p. The polynomial ℘ =def x
p − x defines an additive

function on k.

(1) Prove that the kernel of ℘ : k → k is Fp.
Proof: The map ℘ acts by sending x 7→ xp−x. So we are looking for the values of
x which make xp−x equal to zero, i.e. the roots of the polynomial. If we consider
elements of Fp, we know that these satisfy the equation xp − x = 0 because we
are in a characteristic p field. We also know that there are a total of p elements
in Fp and since there are at most p roots of xp−x, it follows Fp is the kernel of ℘.

(2) Prove that if a field L containing k contains a β such that ℘(β) = α, then the
polynomial ℘(x)− α splits completely.
Proof: To show that ℘(x)−α splits completely we can simply find all the roots of
the polynomial. For notation, let f(x) =def ℘(x)− α. We are already given that
β is a root. Let us consider some β + n for 1 ≤ n ≤ p. Because ℘ is additive we
have that ℘(β+n) = ℘(β)+℘(n) = α+℘(n) = α+np−n. However, since we are
still in characteristic p, np− n = 0, thus ℘(β + n) = α so all roots are of the form
β+n and there are p of these roots. Since the deg f(x) = p, f(x) splits completely.

(3) Prove that the polynomial ℘(x)− α is separable.
Proof: We have the following theorem:

Thm: A polynomial is separable iff the polynomial itself and its derivative have
no common divisors

So clearly the derivative of ℘(x)−α = pxp− 1. But since we are in character-
istic p, pxp − 1 = −1 because pxp = 0. −1 clearly has no common divisors with
℘(x)− α, thus ℘(x)− α is separable.

(4) Prove that if ℘(x) − α is irreducible, the splitting field L of ℘(x) − α has degree
p over k, and has automorphism group Z/p
Proof: The degree of the field extension of L for f(x) over k is defined as dimk L.
Since L is a splitting field for f(x), f splits into linear factors in L. So we can
generate L using k and the roots of f(x). Thus the roots form a basis for L over
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k, and since there are p roots, the dimk(L) = p. We saw in part 2 that every root
is dependent on one root which we defined as β. That is, every root is defined as
β + n for 1 ≤ n ≤ p. Since automorphisms permute the roots of f(x), we only
have to consider permutations of β, of which there are a total of p permutations.
This is because every root is defined in terms of β+n, so for the automorphism to
preserve structure, we can only permute where β goes, giving us p permutaions.
Thus the automorphism group is isomorphic to Z/p.

(5) Prove that if L/k is a field extension of degree p and Aut(L/k) = Z/p then there
is α ∈ k and β ∈ L such that fα(β) = 0 and β /∈ k. Such an element will be called
an Artin-Schreier root of α and will be denoted by ℘−1(α). It plays the role of
a p-th root in characteristic p. When is k(℘−1(α)) ' k(℘−1(α′))?
Proof: Because L/k is a field extension of degree p with Aut(L/k) = Z/p, we
know that L/k is cyclic of degree.
We then use the additive form of Hilbert’s Theorem 90 which states the following
Let k be a field and L/k a cyclic extension of degree n with group G. Let σ be a
generator of G. Let β ∈ L. The trace TrLk (β) = 0 iff ∃ an element α ∈ L such
that β = α− σα

Because we are in characteristic p the TrLk (−1) = 0. If we let σ be the genera-
tor of the Galois group, then by Hilbert’s theorem 90 we know that ∃β ∈ L/k such
that σβ−β = 1. Which implies σβ = β+ 1. And then it follows that σiβ = β+n
for n = 1, ..., p, and β has p distinct conjugates, which means that [k(β) : k] = p.
This then implies that the splitting field L = k(β).

We now show that βp − β is fixed under σ.

(18) σ(βp − β) = σ(β)p − σ(β) = (β + 1)p − (β + 1) = βp − β.

Since βp−β is clearly fixed under σ, powers of σ, and under G, it lies in the fixed
field k. Thus by setting α = βp − β, then we have found an α ∈ k and a β ∈ L
such that fα(β) = 0 and β /∈ k.

*Adapted from Lang’s Algebra

k(℘−1(α)) ' k(℘−1(α′)) when fα′ = fα and both irreducible in k [x]
This is due to the following proposition 9.2.1 from Goodman’s Algebra:

Let k be a field and let f(x) be a monic irreducible element of k [x]. If L and
L′ are field extensions of k containing elements α and α′ satisfying f(α) = 0 and
f(α′) = 0, then there is an isophorphism ψ : k (α) → k (α′) such that ψ(k) = k
for all xεk and ψ(α) = α′.

Proof of Theorem: k(α) ∼= k[x]/(f(x)) ∼= k(α′) by isomorphisms that leave
that leave k pointwise fixed.



CHAPTER 10

Finite Subgroups of the Multiplicative Group

by Chenchong Zhou

(1) Prove that every finite subgroup of the multiplicative group k× of a field k is
cyclic.

(2) Let k be of characteristic p. Prove that

(19) Hom(Z/(pn), k×) = {x ∈ k× | xpn = 1}

is the trivial group.

(3) Consider the polynomial f(x) = xp
k − x. Prove that f(x) is separable over any

field k (hint: handle characteristic p and not p separately).

Proof.
Say A is a finite subgroup of k× is the same as saying A is a finite subgroup of the
group of all roots of unity in K. For a ∈ A, a has a finite order. Also for n ≥ 1,
xn = 1 has at most n roots in K.
Let a be an element of such a subgroup A with the maximal order N . Let b be
any element of A, n is its order. If n 6 |N , by prime factorization, there is a prime
p and a power of it q = pr such that q|n and q 6 |N .

Now claim that ord(abn/q) = lcm(N, q) > N which contradicts the definition of
N . (Note that N, q are coprime. Given a finite abelian group, d = ord(ab),m =
ord(a), n = ord(b), we know d|lcm(m,n) = mn

gcd(m,n) and mn
gcd(m,n)2

|d)

Since n|N , aiN/n ∈ A with 0 ≤ i < n are the n distincet roots of xn = 1, and b is

generated by aN/n. This shows aN/n is a generator of A.

When k is of characteristic p, xp
n − 1 = 0 is (x − 1)p

n
= 1, so identity is the

only solution and {x ∈ k× | xpn = 1} is trivial.
Let a be the generator of Z/(pn) since the group is cyclic. Let f ∈ Hom(Z/(pn), k×),
note that f corresponds to f(a) = b ∈ k× because f is defined as f(ak) = bk.
Note that by definition of homomorphism, we also need f(ap

n
) = bp

n
= 1, so we

have a bijection now.

Need to show f(x) and f ′(x) = pkxp
k−1 − 1 are coprime.

When k is of characteristic p, f ′(x) = −1, so they are coprime.
When k is not of characteristic p, f(x) = 1

pk
f ′(x) + ( 1

pk
− 1)x.
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f ′(x) = pk

1/pk−1
xp

k−2(1/pk−1)x−1, since the remainder from Euclidean Algorithm

is a contant −1, f(x) and f ′(x) are coprime.



CHAPTER 11

The Classification of Finite Fields

by Jason Liberman

Proposition 1: For every finite field k there is a natural number n so that k has
cardinality pn where p is the characteristic of k.

Proof. We have that k has prime characteristic p.

Lemma 1.1: k must contain a subfield isomorphic to F = Fp.

Proof. Let us consider the ring homomorphism

φ : Z −→ k(20)

n 7−→ n · 1k(21)

Now, from the first isomorphism theorem, we know that Z/kerφ ∼= im(φ). But im(φ)
is a subring because the image of a ring homomorphism is a subring. But any subring
of a field is an integral domain so im(φ) is an integral domain. Then, Z/kerφ is an
integral domain because this property is preserved under isomorphism. It follows
that kerφ is a prime ideal, for if not, there would be zero divisors in Z/kerφ. This
implies that kerφ = Z/pZ. Therefore, we conclude that im(φ) is not only a subfield,
but also that im(φ) ∼= Z/pZ = Fp

k is a finite field, so the dimension of k as an F -vector space is finite. Let dimFk = n.
Then the basis of k as an F -vector space has n elements, each of which has coefficients in
F . Because elements of k can be written uniquely in terms of the basis elements over F ,
there are pn elements of k.

�

Proposition 2: Prove that a finite field k of cardinality pn is the splitting field of the
polynomial f(x) = xp

n − x over Fp.
30
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Proof. We will show that a field has finite cardinality pn if and only if it is the splitting
field of f(x) = xp

n − x over Fp.

(⇒) We want to show that if k is a finite field of order pn, f(x) splits completely in
k, and the roots of f(x) generate k over Fp. Let m = pn. Consider the multiplicative
group k×. This group has order m − 1 because it contains all elements in k excluding 0.
Therefore, the order of α ∈ k× divides m− 1, so αm−1 = 1.

Now, we have that

(22) xm − x = x(xm−1 − 1)

Because ∀α ∈ k×, αm−1− 1 = 0, all elements of k× are roots of xm - x. But 0 is also a
root. Therefore, every element of k is a root of xm - x. But we also know from project 10,
part 3, that f(x) is separable over any field. Therefore, it has m distinct roots. Then the
elements of k are precisely the distinct m roots of f(x). Also, the roots generate k over Fp
since they form a field which contains Fp. Therefore, k is a splitting field of f(x) = xp

n −x
over Fp.

(⇐)Now, let us show that the splitting field L of f(x) = xp
n −x over Fp is a finite field

of order pn. We know that there are pn distinct roots of f in L. First, let us show that
these pn distinct roots form a subfield K ⊆ L.

Lemma 2.1: In Fp[x, y], (x+ y)m = xm + ym where m = pn.

Proof. Use induction on n. When n = 1,

(23) (x+ y)p = xp +

(
p

1

)
xp−1y + · · ·+

(
p

p− 1

)
xyp−1 + yp

But then, all of the middle terms are divisible by p, so they are all equal to zero
in Fp[x, y]. Therefore, we have that (x+ y)p = xp + yp.

Now, we suppose the statement is true for some n > 1. Then,

(24) (x+ y)p
n+1

= (x+ y)(pn)p = (xp
n

+ yp
n
)p = xp

n+1
+ yp

n+1

So by induction, we have that in Fp[x, y], (x+ y)m = xm + ym where m = pn.

�

Now, let us show that the roots of f(x) = xp
n − x form a subfield K ⊆ L. Suppose α

and β are two roots. We must show that α + β, −α, αβ, α−1, and 1 are all roots. From
the lemma above, we know that (α+β)m = αm +βm = α+β. So (α+β)m− (α+β) = 0.
Then (αβ)m − αβ = αmβm − αβ = αβ − αβ = 0. 1 is a root since 1m − 1 = 0. Also,
(α−1)m − α−1 = α−m − α−1 = α−1 − α−1 = 0. In order to show that −α is a root, let us
show that −1 is a root. If p = 2, (−1)m = 1, and (−1)m + 1 = 0 since then char(L) = 2.
If p 6= 2, then (−1)m = −1 so −1 is a root. Therefore, −α is a root since −1 and α are.

Next, let us show that γ ∈ Fp is a root of f . If γ = (1 + 1 + · · · + 1), then γm − γ =
(1 + 1 + · · ·+ 1)m − γ = (1m + · · ·+ 1m)− γ = 0.



11. THE CLASSIFICATION OF FINITE FIELDS 32

We have shown that the roots of f(x) = xp
n − x over Fp form a subfield K ⊆ L. But

then xp
n − x splits into linear factors in K, and clearly K is generated by the roots of

f over Fp, which K contains. But then by the minimality of the splitting field, K is the
splitting field, and it has order m = pn. Therefore, the splitting field of f is a finite field
of order pn.

�

Proposition 3: Any two finite fields of the same cardinality are isomorphic.

Suppose k and k′ are two finite fields of order pn. From Project 10, part 1, we know
that every finite subgroup of the multiplicative group of a field is cyclic. Since k× is finite,
it is a finite subgroup of itself. Therefore, k× is cyclic. Therefore, k = F (α) where α is the
generator of k×.

We know that α is algebraic over F because it must be a root of xp
n−x. Therefore, there

is a unique minimal polynomial, g(x) ∈ k(x) such that g(x) divides all of the polynomials
with root α. Then, we have that:

(25) deg(g(x)) = dimF (F (α)) = n

(26) F (α) ∼= F [x]/(g(x))

Since α is a root of xp
n − x, g must divide xp

n − x.

Now, we also know that xp
n − x splits into linear factors in k′. So g has a root α′ in

k′. α′ is algebraic over F , so g(x) is the minimal polynomial for α′ over F . Therefore, we
have that

(27) deg(g(x)) = dimF (F (α′)) = n

(28) F (α′) ∼= F [x]/(g(x)) ∼= F (α)

Now, all that is left to show is that F (α′) = k′. Both F (α′) and k′ are vector spaces
over Fp, and dimF (k′) = n = dimF (F (α)). Therefore, we conclude that:

(29) k ∼= F (α) ∼= F (α′) ∼= k′

�



CHAPTER 12

The Euler Totient Function

by Andrei Nagornyi

Let ϕ(n) be the Euler totient function:

(30) ϕ(n) = #(Z/nZ)×.

1. Closed form of ϕ(n)

Proof. Recall from class that given a universal set U and subsets A1, A2, . . . , Am of
U , |A1∩A2∩· · ·∩Am| = |U |−

∑
i
|Ai|+

∑
i<j
|Ai∩Aj |−

∑
i<j<k

|Ai∩Aj∩Ak|+ . . .+(−1)m|A1∩

. . . ∩ Am|. Now, let n ∈ Z+ and U = {x | 0 < x ≤ n}. Let pr11 p
r2
2 . . . prhh denote the prime

factorization of n, and define the collection of subsets of U , Ai = {x | pi|x, 0 < x ≤ n}
for 1 ≤ i ≤ k. It is clear that ϕ(n) = |A1 ∩ A2 ∩ · · · ∩ An| = |U | −

∑
i
|Ai| +

∑
i<j
|Ai ∩

Aj | −
∑

i<j<k

|Ai ∩Aj ∩Ak|+ . . .+ (−1)n|A1 ∩ . . .∩Ah|. We now make the observation that

|Aj1 ∩ . . . ∩Ajs | = n · 1
pj1 ...pjs

. After making this substitution, we have ϕ(n) = n−
∑
i

n
pi

+∑
i<j

n
pipj
−

∑
i<j<k

n
pipjpk

+ . . .+ (−1)h( n
p1...ph

) = n(1− 1
p1

) . . . (1− 1
ph

) = n
∏
pi|n

(1− 1
pi

). �

2. The totient function is multiplicative

Prove that if (m,n) = 1 then ϕ(mn) = ϕ(m)ϕ(n).

Proof. If (m,n) = 1, then by the Chinese Remainder Theorem, we have Z/mnZ ∼=
Z/mZ × Z/nZ. Consequently, we also have (Z/mnZ)× ∼= (Z/mZ)× × (Z/nZ)×. Hence,
ϕ(mn) = ϕ(m)ϕ(n). �

3. If a field k contains a primitive m-th root of unity, then k contains all m-th
roots of unity.

Proof. Let g be a subgroup of the multiplicative group k× consisting of all m-th roots
of unity. Note that g must be finite since the polynomial xm−1 will have at most m distinct
roots. We also know that g must be cyclic, based on the first result of project 10. Then,
since k contains a primitive m-th root of unity z, we have zm = 1. It is clear that z is a
generator of g, and hence of all the m-th roots of unity of k. �
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CHAPTER 13

The Totient Function II

(1) For each m ∈ N, define Ξm = xm − 1. If k is a field, we denote by ζm a primitive
m-th root of unity and thus k(ζm) the splitting field of Ξm. Prove that there is a
natural injection Aut(k(ζm)/k)→ (Z/m)× so dimk k(ζm) ≤ ϕ(m).

(2) Prove that dimQQ(ζm) = ϕ(m). (Hint: induction on the number of divisors of
m).

From here on out, we define Γm =def Aut(Q(ζm)/Q) = (Z/m)×.

34



CHAPTER 14

The Classification Theorem for Finitely-Generated
Z-modules: Part I

Let M be a finitely-generated abelian group. Prove that there exists a natural number
n, primes p1, . . . , pn, and for each pi natural numbers ej1, . . . , ej`i and rj1, . . . , rj`i such
that

(31) M ' Zn ⊕
n∏
i=1

`i∏
j=1

(Z/peji)rji

35



CHAPTER 15

The Classification Theorem for Finitely-Generated
Z-modules: Part II

by Rami Sherif

1. Given an abelian group M , show that the numbers n, pi, `i, eji and rji can be
determined independently of the decomposition from question 14.

To begin, we will assume the decomposition from part 14 and rewrite it as follows: For
M a finitely generated abelian group,

(32) M ' Zn ⊕
∏
p,e

(Z/pe)r(p,e)

We want to show that this decomposition is unique. I.e. we want to show that n and
r(p, e) are unique, as if these two are unique than the rest of the uniqueness follows.

1.1. Considerations. To start, let us consider the following tensor
products:
(1) Q⊗ Z
Anything tensor Z is equal to itself, so, Q⊗ Z = Q.
(2) Similarly, Z⊗ Z/n=Z/n
(3) Q⊗ Z/n
This is generated by a⊗b, a ∈ Q, b ∈ Z. In Q, division by n ∈ Z in allowed. Let

a=n(a/n). a⊗b=n(a/n)⊗b. By bi-linearity of tensor products, n(a/n)⊗b=((a/n)⊗b)n=(a/n)⊗(bn)=0,
since bn∈ Z/n.
Thus, Q⊗ Z/n=0
(4) Z/pe ⊗ Z/pf where p is some prime and e 6= f
Z/pe ⊗ Z/pf=(Z/peZ)/((pfZ/pfZ)=Z/(peZ + pfZ)

(peZ + pfZ) = (pmin(e,f)Z) ⇒ Z/pe ⊗ Z/pf=Z/(pmin(e,f))

1.2. Proof of Uniqueness. Now let us go back to the decomposition defined by
equation (1). Consider,

(33) M ⊗Q
Using (1) and (2) from the tensor products we considered above, tensoring with Q will

send all Z to Q and any other term ∈M to 0. Thus,

36
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(34) M ⊗Q ' Qn

Or, in other words, M ⊗ Q is isomorphic to the direct sum of Q with itself, n times.
When we tensor M with Q, we get a series of n terms and that n is specific to that
decomposition of M . Any different decomposition of M will result in a different tensor
product with Q with m 6= n terms.

Thus, n is unique.

Now, we claim that all r(p, e) in the above decomposition of M are unique. Consider,

(35) M ⊗ Z/p ' (Z/p)x

This tensor product results in an abelian group where x = n+
∑∞

e=1 r(p, e)= the number
of terms in the tensor product. This can be explained as follows: in the tensor product,
each Z/p will hit a series of Zs from the (Z)n portion of the decomposition giving n terms.
Then, each Z/p will hit everything else ∈M, and by tensor product number (4) considered
at the beginning of this proof, all of the terms will go to Z/p. The group Z/p has order
p, while the group (Z/p)2 has order p2. Therefore, the group (Z/p)x has order px, where
x = n+

∑∞
e=1 r(p, e).

Similarly, consider,

(36) M ⊗ Z/(p2) ' (Z/p2)n
⊕

(Z/p)c
⊕

(Z/p2)d

n was uniquely determined in the beginning of this proof. The first term is a result of
Z/p2 hitting Zn ∈M . The second term is a result of Z/p2 hitting any term Z/p ∈M and
following from tensor product (3) considered above. c = r(p, 1) since it is all terms with
e = 1. Finally, the last term is a result of Z/p2 hitting any term Z/(pe) ∈M for any 2 ≤ e,
also according to tensor product (3) that we considered. So, d =

∑∞
e=2 r(p, e). Thus the

total number of terms in (5) is n+ r(p, 1) +
∑∞

e=2 r(p, e).
Following the same reasoning as before, (Z/p) has order p and (Z/p)2 has order p2, so

(Z/p2)n
⊕

(Z/p)c
⊕

(Z/p2)d has order p2n+c+2d = p2n+r(p,1)+2
∑∞

e=2 r(p,e).

Suppose, now, that we wanted to isolate a specific r(p, e) to show that any r can be
shown to be unique for a given p. Let’s try and show that r(p, 1) is unique. Take the two
group orders that were determined above.

(37) Ord(M ⊗ Z/p) = pn+
∑∞

e=1 r(p,e)

(38) Ord(M ⊗ Z/(p2)) = p2n+r(p,1)+2
∑∞

e=2 r(p,e)

Now, let us take the logp of both of the above equations:
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logp[Ord(M ⊗ Z/p)]=logp[p
n+

∑∞
e=1 r(p,e)]→ logp[Ord(M ⊗ Z/p)] = n+

∑∞
e=1 r(p, e)

Similarly, for (7):

logp[Ord(M ⊗ Z/(p2))] = logp[p
2n+r(p,1)+2

∑∞
e=2 r(p,e)]

→ logp[Ord(M ⊗ Z/(p2))] = 2n+ r(p, 1) + 2

∞∑
e=2

r(p, e)

From this, we can easily isolate a specific r, say r(p, 1):

(39) r(p, 1) = logp(Ord(M ⊗ Z/(p2)))− 2[logp(Ord(M ⊗ Z/p)]

Thus, we can see that r(p,1) can be isolated and written uniquely.
This can be continued for all e by taking M ⊗Z/(pe) ∀ e and getting a term r(p, e− 1)

within the sum defining the number of terms within the tensor product. From here, it
is obvious that we can continue to tensor M with Z/(px) ∀ x until we get a system of
equations that can be manipulated using simple arithmetic to isolate r(p, e) for any given
p.

Finally, it should be noted that if M were at all different from the decomposition
defined at the beginning of this proof, all of the tensor products would result in different
answers and thus give different values for r and n.

Since both n and r are found to be unique for any given p, it follows that all bounds
are unique to the particular abelian group and can be independently determined.

�

2. Given M,M ′ two finitely-generated Z-modules, prove that an injective map
i : M →M ′ has image of finite-index if and only if M ' Zn ⊕ F and

M ′ ' Zn ⊕ F ′ where F and F ′ are finite abelian groups.

We showed above that n is unique. Since n is unique, it is called the rank of the abelian
group. M is a submodule of M ′. If the image is of finite index, then the quotient group is
finite. In other words, we want to show that the image is of finite index if and only if M
and M’ have the same rank.

⇒
Assume that the image of the map i is of finite-index. Consider the following direct

sequence:

(40) 0→M →M ′ →M ′/M → 0
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Now let us tensor this entire sequence with Q:

(41) [0→M →M ′ →M ′/M → 0]⊗Q = 0⊗Q→M⊗Q→M ′⊗Q→ (M ′/M)⊗Q→ 0

0 ⊗ Q remains 0 since Q is a flat Z-module, i.e. Q preserves sequences. Additionally,
(M ′/M)⊗Q goes to 0 since we are assuming that (M ′/M) is a finite group.

Thus, we are left with:

(42) 0→M ⊗Q→M ′ ⊗Q→ 0

In direct sequences, the image of one arrow is the kernel of the next arrow. Thus, from
(11), the first arrow is the image, and it is 0 since 0 maps only to itself in M ⊗ Q. From
this, kernel of the map M ⊗Q→M ′ ⊗Q (the middle arrow) is equal to 0 also. This gives
us that M ⊗Q→M ′⊗Q is injective. Additionally, the last arrow is the kernel of the map
M ′⊗Q→ 0. Here, the kernel is everything, since everything maps to 0. Thus, the middle
arrow is now the image of the map M ⊗Q→M ′ ⊗Q, which is everything following from
the kernel. From this, the map M ⊗Q→M ′ ⊗Q is surjective. Since we have shown both
injectivitty and surjectivity,

(43) M ⊗Q 'M ′ ⊗Q.
Thus, given M ' Zn ⊕F and M ′ ' Zn ⊕F ′ where F and F ′ are finite abelian groups,

M and M ′ have the same rank.

⇐
Now, let us assume that M and M ′ have the same rank. Once again, take the tensor

product of the direct sequence considered above:

(44) 0⊗Q→M ⊗Q→M ′ ⊗Q→ (M ′/M)⊗Q→ 0

Since M and M ′ have the same rank, M ⊗ Q ' M ′ ⊗ Q. Due to this isomorphism,
we get that the map is both surjective and injective. Thus, the map has kernel=0 and
image=everything. This gives us that the next arrow, the map M ′ ⊗ Q → (M ′/M) ⊗ Q,
has kernel=everything, so everything maps to 0.

Therefore, (M ′/M) ⊗ Q = 0. This means that the rank of (M ′/M) is 0, which shows
us that M ′/M is finite. Thus, assuming that M and M ′ have the same rank, we have that
the map i is of finite index.

�



CHAPTER 16

Ramification in Z[ζp]

by Camilo Bermudez

Let p be a prime in Z, and let R be a Z-algebra. We say that p is ramified in R if R/(p)
if it contains a nilpotent element: there exists α ∈ R, k ∈ N such that αk = 0 but α 6= 0.
Otherwise, we say that p is unramified in R.

1. Part One:

Claim: if m =
∏n
i=1 p

ei
i then Z[ζm] =

⊗n
i=1 Z[ζpeii

].

Proof: The way I will prove this assertion is by showing that there exists a map of inclusion
of subrings from right to left and I will show that this map is trivial. We will use the
universal property of tensor to show that there exists an n-linear map from the tensor of
subrings to the larger ring Z[ζm]. However, first we have to show that each of the Z[ζpei ] is
a subring of Z[ζm].

In order to show this, we must remind ourselves that Z[ζm] is isomorphic to Z[x]/Φm,
the ring of polynomials in Z modded out by the minimal polynomial of ζm. Now, in Z[ζm],
we are adjoining all the roots of the minimal polynomial of ζm. Any subring of the form
Z[ζqeii

] where q|m, will have all the roots of the minimal polynomial of ζqeii
, which are, of

course roots of the minimal polynomial of ζm. In other words, the roots in each subring
are all roots of the same polynomial Φm. Note that these will not account for the primitive
mth roots of unity, so we will have to account for these later.

Now we have to define the map between these two rings. As mentioned before, we can
use the universal property of the tensor product to define an n-linear map from the tensor
to the larger ring. This map is defined by sending a tuple of elements in each subring of
the tensor to their product.

ι :
⊗n

i=1 Z[ζpeii
] −→ Z[ζm]

(ζqe11
, ζqe22

, ..., ζqeii
) 7−→ ζqe11

∗ ζqe22 ∗ ... ∗ ζqeii .

Now we just have to account for all the primitve mth roots of unity, which are not in
the subrings. We can show that multiplying two primitive roots of unity will, in turn, give
another primitive root of unity. Take for example m = ab, for a,b relatively prime. Then
we want to show that, ζa ∗ ζb = ζm. In other words, if (ζa ∗ ζb)n = 1 for n < m, then n=m.
We can show this by applying the division algorithm on n.

We begin by dividing n by a and get n=aq+r, so the above now looks: (ζa ∗ζb)aq+r = 1.

We can separate this and get (ζaqa ∗ ζra ∗ ζ
aq+r
b ) = 1. The first term will become one, since
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it is raised to the power of a multiple of a, and now we can raise everything to the power

of be and get (1 ∗ ζrba ∗ ζ
aqb
b ∗ ζbrb ) = 1. Again, we see that the last two terms will become 1,

since they are raised to the power of a multiple of b, which leaves us with ζrba = 1, which
means that a|(rb). This leaves two cases: Either a|b or a|r. The first case is impossible
because a and b are relatively prime. Therefore, a|r. This means that n is a multiple of
a. By symmetry, we could also show that n is a multiple of b. Now, since a|n and b|n,
then m|n. We know then that ζa ∗ ζb is an mth primitive root of unity, as m is the smallest
possible number (i.e. the product of a and b) such that (ζa ∗ ζb)m = 1.

Now that we have shown that the map described above exists and is well defined, we
want to show that the inverse to this map exists as well. We will define this map as

τ : Z[ζm] −→
⊗n

i=1 Z[ζpeii
]

ζm 7−→ ζq1 ⊗ ζq2 ⊗ ...⊗ ζqm
This map will send the mth root of unity to the tensor of factors-of-m roots of unity.

First, we need to check that ζm is, in fact, a primitive root of unity. Consider m = a ∗ b
for a,b relatively prime. If we raise ζm to the mth power, then we get ζa∗bm = 1. We want
to make sure that this is not a kth root of unity, for any k < a. We can show this simply
by stating that if such k exists, then ζb∗km would not be a primite mth root of unity but a
primitive bkth root of unity, which is not what we want. Thus, the prime factorization of
m determines that ζm will be a primitive mth root of unity.

Lastly, we want to check that this inverse map is surjective. Again, consider m = a ∗ b
for a,b relatively prime. Then the map will send ζm 7→ ζa ⊗ ζb. We want to show that
we can generate the entire tensor of subrings from this map. We can do this by taking
(ζa ⊗ ζb)a = (1 ⊗ ζab ) from this we can generate the integers with (1 ⊗ 1) and the entire
subring Z[ζb] with (1 ⊗ ζab ) by taking powers of ζb. Likewise, we can raise the original
(ζa ⊗ ζb)a and generate the subring Z[ζa]. Thus in the case of a finite number of prime
factors of m, we can generate each of the subrings systematically from the tensor of the
factors-of-m roots of unity.

Since we have shown that there exists a well-defined map between these two rings and
it contains an inverse, then this map is a bijection. Therefore, this is an isomorphism of
rings. We can now consider these two to be equal as rings.

2. Part Two:

Claim: Let q be a prime. p is unramified in Z[ζqk ] if and only if p 6= q.

Proof: The statement above is equivalent to showing that the mth cyclotomic polynomial
is separable. In other words, p is unramified in the smallest possible field that contains all
the mth roots of unity. Recall that we are now in characteristic p where, according to the
definition of unramified, there should be no nilpotents.

First, lets look at our ring of interest Z[ζqk ] which in characteristic p is equal to the
finite field Fp[ζqk ] ∼= Fp[x]/Φqk , where Φqk is the minimal polynomial of ζqk . We know that

Φqk =
∏k
i=1 fi(x) where each fi(x) is an irriducible factor of the minimal polynomial. We

can use the Chinese Remainder Theorem to get a cartesian product of fields:
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Fp[x]/Φqk = Fp[x]/f1(x)× ...× Fp[x]/fk(x)

Now we can check that the cartesian product has no nilpotents. Take (a1, a2, ...ak)
l = 0

for some lεN and a in each of the fields described above. Since the cartesian product is a
k-linear map this is equivalent to (al1, a

l
2, ...a

l
k) = 0. This means that each of the elements

in the cartesian product are ali = 0. Since fields have no nilpotents, then this implies that
ai = 0. Thus, none of the fields in the cartesian product has a nilpotent element, which
means that the original ring will not have any nilpotents.

Now we just have to check the case where p = q. Remember that since we are in
characteristic p, we can use the Bionomial Theorem to show that the polynomial in Z,

(xq
k −1) = (x−1)q

k
. Now when we adjoin a root of this polynomial, α, we get (α−1)q

k
=

(α− 1)p
k

= 0. However, we know that (α− 1) 6= 0 because α 6= 1, since it was adjoined to
Z. Thus, (α− 1) must be a nilpotent in this ring and p will be ramified.

3. Part Three:

Claim: p is unramified in Z[ζm] if and only if p - m.
Proof: This is a more general statement than what was proven in Part Two. Recall that
m =

∏n
i=1 pi, so as shown in Part One, we can decompose the ring Z[ζm] into the tensor

of subrings. However, now we want to see how this behaves in characteristic p, so we get:

Fp[x]/Φm = Fp[x]/Φq1 ⊗ ...⊗ Fp[x]/Φqn

As shown in Part One, if p|m, then one of the subrings in the tensor will be of the form
Fp[x]/Φp1 . We know from Part Two that the subring of the pth root of unity in characteristic
p will have a nilpotent element. Therefore, if there is a nilpotent element in the tensor,
then there will be a nilpotent element in the larger ring, since these two are isomorphic.
This is easily shown by the map that takes a tuple of elements in the tensor to their product
in the larger ring.

If p - m, then none of the elements would have nilpotents and p would be unramified
in Z[ζm].



CHAPTER 17

Algebras of Dimension 2

by David Fertig

1. Algebras of Dimension 2

Let k be a field. Let A be a (commutative!) k-algebra.

(1) Prove that if dimk A <∞ then A is an integral domain if and only if A is a field.
(2) Prove that if dimk(A) = 2, then

(a) If A is a field, A is either generated by the square root of an element α in k
or, if the characteristic of k is 2, by an Artin-Schreier root ℘−1(α) for some
α ∈ k.

(b) Show that if A is not a field, then either A = k × k or A = k[t]/t2.

1.1. Proof of 1. ⇐ If A is a field, A is an integral domain.
⇒ Using the Rank-Nullity Theorem

(1) Consider a non-zero y ∈ A.
(2) T : A⇔ A such that Tx = yx x ∈ A.
(3) By Rank-Nullity Theorem, dim(ker(T )) + dim(im(T )) = dim(A).
(4) dim(im(T )) = dim(A) because T : A⇔ A which implies dim(ker(T )) = 0.
(5) This means that T is surjective with a trivial kernel, which implies that there

exists z ∈ A such that zy = 1, so every y ∈ A is invertible.
(6) So A being an integral domain implies A is a field.

1.2. Proof of 2a.

(1) If
√
α ∈ A,

√
α /∈ k, and α ∈ k, k[

√
α] is a two dimensional k-algebra with a basis

[1,
√
α].

(2) A = k[
√
α] = [x+ (y ∗

√
α) | ∀x, y ∈ k].

(3) a, b ∈ A. If x, y ∈ K and x ∗ y = 0, ⇒ x or y = 0.
(4) ⇒ A is an integral domain ⇒ A field by 17.1.
(5) All elements of A have cardinality = 2.
(6) By 11.3, all fields with the same cardinality are isomorphic. ⇒ all fields A when

K has characteristic > 2 are isomorphic to k[
√
α] as shown above.

(7) If you attach more than one root to k, dimkA > 2.
(8) If char(k) = 2 meaning 1 + 1 = 0 in k, you must attach the Artin-Schreier root

as described in problem 9.
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(9) A = k[X]/[X2 − X − α]] where ℘−1(α′) is the solution to X2 − X − α = 0, so
A = k[(℘−1(α′))].

(10) X2 −X − α is irreducible in k when char(k) = 2, so A is a field.
(11) Again by 11.3, all fields with the same cardinality are isomorphic, so all algebras

over k of dimkA = 2 where char(k) = 2 are isomorphic to A = k[(℘−1(α′))].

1.3. Proof of 2b.

(1) A = k × k = [a× b | ∀a, b ∈ k] and A = k[t]/t2 = [a+ bt | ∀a, b ∈ k].
(2) [(0, 1), (1, 0)] ∈ k × k, and (0, 1)× (1, 0) = (0, 0)⇒ k × k is not a field.
(3) (0 + 1t) ∈ k[t]/t2 and (0 + 1t)× (0 + 1t) = 0⇒ k[t]/t2 is not a field.
(4) Assume f(t) is a quadratic function with both roots a, b ∈ k, A = k[t]/f(t) is not

a field because [(t− a), (t− b)] ∈ k[t]/t2 and (t− a)× (t− b) = 0 ∈ k[t]/f(t)].
(5) k[t]/f(t) ∼= k[t]/t2 ⇒ all non-field A with dimkA = 2 take are equivalent to the

forms k × k or k[t]/t2.



CHAPTER 18

Quadratic Residues

by Samuel Charles Passaglia

Let p be a prime number. We say an integer m is a square mod p if and only if there is an
integer n such that m ≡ n2 (mod p). We define the quadratic residue symbol

(45)

(
m

p

)
=def

 1 if m is a square mod p
0 if p|m
−1 otherwise

(1) Prove that

(46)

(
m

p

)
= m

p−1
2 (mod p).

Proof. Note p should be an odd prime.
(
m
p

)
= 0 ⇔ m = n · p for some

n ∈ F×p ⇔ m
(p−1)

2 (mod p) = (n · p)
(p−1)

2 (mod p) = (n)
p−1
2 (mod p) · (p)

(p−1)
2

(mod p) = 0 (mod p).

Theorem 22 (Fermat’s Little Theorem). For p prime, m ∈ F×p ,

(47) mp ≡ m (mod p).

Hence:

(48) mp−1 ≡ 1 (mod p).

F×p is a group under multiplication, thus every element to the power of the

order of the group is equal to 1. Since the order of F×p is (p− 1), then we get the
result above.

mp−1 ≡ 1 (mod p)⇔ (m
p−1
2 + 1) · (m

p−1
2 − 1) ≡ 0 (mod p). Hence:

(49) m
p−1
2 ≡ 1 or − 1 (mod p).

Thus we are reduced to compute

(50)

(
m

p

)
= 1⇔ m

p−1
2 ≡ 1 (mod p)

“⇒” Want to show: If
(
m
p

)
= 1 then m

p−1
2 ≡ 1 (mod p)(

m
p

)
= 1 ⇒ m ≡ n2 (mod p) ⇒ m

p−1
2 ≡ np−1 (mod p) ≡ 1 (mod p) (By Theo-

rem 1)
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“⇐” Want to show: If m
p−1
2 ≡ 1 (mod p) then

(
m
p

)
= 1

Recall from Project 10 that the multiplicative group of a finite field is cyclic. Thus

m = aj for some j, where a is the generator of F×p . Hence a
j·(p−1)

2 ≡ 1 (mod p).

Given that p-1 is the order of F×p , (p− 1)|(j · p−1
2 ). Thus, j is even. Now consider

the element a
j
2 of F×p . (a

j
2 )2 = aj = m Thus, m is a quadratic residue mod p. �

(2) Prove that the map

(51) κp : F×p → {±1}

given by

(52) κp(m) =def

(
m

p

)
is a group homomorphism. Prove that in fact it is the only non-trivial such
homomorphism.

Proof. We need to show that κp(a · b) = κp(a) · κp(b)
κp(a) · κp(b) =

(
a
p

)
·
(
b
p

)
≡ a

p−1
2 (mod p) · b

p−1
2 (mod p) ≡ (a · b)

p−1
2 (mod p) ≡(

a·b
p

)
= κp(a · b)

To show homomorphism is unique: F×p is a cyclic group under multiplication
(from Project 10), hence every element can be expressed as a product of the
group generator. Thus, all homomorphisms from F×p are uniquely determined by
the image of the group generator. If the group generator maps to 1, clearly the
homomorphism is trivial. Otherwise, the group generator maps to -1, in which
case we have a non-trivial homomorphism, this one. Note that the generator g is
never a quadratic residue for odd p (for even p, it trivially is a quadratic residue).

For odd p, g being a quadratic residue implies g
(p−1)

2 = 1, which contradicts that
the order of the multiplicative group is p− 1. �

(3) Prove that, if p is an odd prime,
(
−1
p

)
= (−1)

p−1
2 and

(
2
p

)
= (−1)

p2−1
8 . (Hint:

for −1, use cyclicity of F×p . For 2, let ζ be an eighth root of unity. Calculate the

powers of ζ + ζ−1.

Proof. For −1, we see that
(
−1
p

)
≡ (−1)

p−1
2 (mod p). Since p is odd,

(−1)
p−1
2 is either 1 or -1. Thus, the mod never enters play, and we get that(

−1
p

)
= (−1)

p−1
2 .

For −2, consider ζ a primitive eighth root of unity in F×p [ζ]. This is a commutative

ring, and we define the usual modular equivalence relation on it. ζ8 − 1 = 0 =⇒
(ζ4 + 1) · (ζ4 − 1) = 0. ζ primitive implies (ζ4 + 1) = 0. Hence ζ2 + ζ−2 = 0 and
therefore by completing the square we get that (ζ + ζ−1)2 = 2. By part 1, this
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=⇒
(

2
p

)
≡ (ζ + ζ−1)(p−1) mod p.

Recall the binomial theorem: (x+ y)p =
∑p

i=0

(
p
i

)
xp−iyi where

(
p
i

)
= p!

i!(p−i)! . The

first and last coefficients of the expansion are clearly 1. For all other terms the
factorial of a prime is divided by the product of two factorials of lesser numbers.
Therefore p!

i!(p−i)! will be a multiple of p, and therefore 0 mod p , unless i = 1 or
p.

Thus (ζ + ζ−1)p ≡
(

2
p

)
· (ζ + ζ−1) mod p implies by the binomial theorem above

the following useful result:

(53) (ζp + ζ−p) ≡
(

2

p

)
· (ζ + ζ−1) mod p

Now since ζ is a primitive eighth root of unity, ζp = ζp (mod 8). Thus since p is an
odd prime, we must consider four cases, p ≡ 1, 3, 5, 7 (mod 8), in order to reduce
the above equation into a form in which ζ does not appear.
Case 1: p ≡ 1 (mod 8).

(ζ+ζ−1) =
(

2
p

)
·(ζ+ζ−1) =⇒ (ζ+ζ−1)2 =

(
2
p

)
·(ζ+ζ−1)2 =⇒ 2 =

(
2
p

)
·2 =⇒(

2
p

)
= 1.

Case 2: p ≡ −1 (mod 8).

(ζ−1 + ζ1) =
(

2
p

)
· (ζ + ζ−1) =⇒

(
2
p

)
= 1

Case 3: p ≡ 3 (mod 8).

(ζ3 + ζ−3) =
(

2
p

)
· (ζ + ζ−1). But consider the following: (ζ3 + ζ−3) = (ζ4 · ζ−1 +

ζ1ζ−4) = ζ4 · ζ4(ζ4 · ζ−1 + ζ1ζ−4) = ζ4(ζ−1 + ζ1). Recall from above that ζ4 = −1,

so get (ζ3 + ζ−3) = −1 · (ζ−1 + ζ1) and thus
(

2
p

)
= −1.

Case 4: p ≡ −3 (mod 8).
Both by symmetry with case 3 and analogy to the relationship between case 2

and case 1, it is clear that
(

2
p

)
= −1.

Hence it is clear that
(

2
p

)
= (−1)

p2−1
8 is correct because it gives the answers

above in all cases of p.
�



CHAPTER 19

Splitting of Primes in Quadratic Number Rings

by Jose Maria Barrero

1. Problem statement

Let p and q be odd primes. Prove that

(54) Z
[√

(−1)(p−1)/2p

]
/(q) =


Fq ⊕ Fq if and only if

(
(−1)(p−1)/2p

q

)
= 1,

Fq2 if and only if
(

(−1)(p−1)/2p
q

)
= −1, and

Fq[x]/(x2) if and only if
(

(−1)(p−1)/2p
q

)
= 0.

In the first case we say q splits, in the second case, it stays inert, and in the third case,
it ramifies.

2. The nature of Z
[√

(−1)(p−1)/2p
]
/(q)

Our first step to proving the claims is to understand and explore the nature of the ring
we are working with.

For notational simplicity, define (−1)(p−1)/2p ≡ γ so that we are working with Z
[√
γ
]
/(q).

Note that γ always corresponds to an element of the field Fq , since it is simply an odd
prime number multiplied by plus or minus one, so it can always be mapped to a residue
class in Fq.

• Lemma: Z
[√
γ
]
/(q) = Fq [x] /(x2 − γ)

proof
Let R = Z

[√
γ
]

so that Z
[√
γ
]
/(q) = R/(q).

However, note that R itself can be realized as

R = Z [x] /(x2 − γ),

that is, by creating a quotient ring from the polynomial ring Z [x] over the principal ideal
generated by f(x) = x2 − γ. This procedure effectively adjoins a square root of γ to Z,
creating a two-dimensional algebra over Z.

Therefore, R/(q) can be realized by quotienting Z [x] successively by (x2 − γ) and (q):

(55) R/(q) = Z [
√
γ] /(q) =

Z [x] /(x2 − γ)

(q)

48



3. RETHINKING QUADRATIC RESIDUES 49

Note that quotienting by (q) in Z [x] is a nontrivial operation, since q is a prime, so it is
therefore not a unit. It acts on the polynomial ring (and on R) by sending the coefficient of
each term to its residue class mod q since axn = mqxn + [a]qx

n 7→ [a]qx
n when quotienting

by (q).
This double quotienting is equivalent to quotienting by the principal ideal generated

by these two elements together : (q, x2 − γ). Indeed,

(56) (q, x2 − γ) = {qr1 + (x2 − γ)r2 | r1, r2 ∈ Z [x]},

so quotienting by (x2−γ) sends an element qr1+(x2−γ)r2 7→ qr1 by the division algorithm,
and then quotienting by (q) sends it to 0. So we have that quotienting by both ideals
succesively annihilates exactly those elements in the principal ideal (q, x2 − γ).

More importantly, this result implies that the double quotienting above is equivalent
to quotienting succesively in the other order, first by (q) and then, since all coefficients are
now residues mod q, by (x2 − [γ]p) to get that

(57) Z [
√
γ] /(q) =

Z
(q) [x]

(x2 − [γ]p)

or, equivalently, since q is a prime:

(58) Z [
√
γ] /(q) = Fq [x] /(x2 − [γ]p).

�

Thus, we can characterize Z
[√
γ
]
/(q) as the quotient of a polynomial ring over a field,

allowing us to use some of the important results developed earlier in the semester.

3. Rethinking quadratic residues

By definition, (pq ) = 1 if and only if there exist an integer n such that n2 ≡ p (mod q).

That is, if n2 − p ≡ 0 (mod q) or equivalently if the polynomial f(x) = x2 − [p]q has a

nonzero root in Fq, where [p]q denotes the residue class of p in Fq.
Similarly (pq ) = −1 if there is no integer n satisfying n2 ≡ p (mod q). In other words,

if f(x) = x2 − [p]q is irreducible over Fq.
Finally, (pq ) = 0 if q divides p, which is to say that p ≡ 0 (mod q).

Therefore we can group the results into the following lemma:

• (pq ) = 1 if and only if [p]q 6= 0 and the polynomial f(x) = x2−[p]q is not irreducible

over Fq.
• (pq ) = −1 if and only if [p]q 6= 0 and the polynomial f(x) = x2− [p]q is irreducible

over Fq.
• (pq ) = 0 if and only if [p]q = 0.
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4. Proof of the theorem

In any of the three cases outlined in the problem, Z
[√
γ
]
/(q) = Fq [x] /(x2 − [γ]q) is a

two-dimensional vector space over Fq, but is slightly different in each.

(1) Fq [x] /(x2 − [γ]q) = Fq ⊕ Fq if and only if
(
γ
q

)
= 1

proof
• Consider the polynomial f(x) = x2 − [γ]p in Fq [x] and let [γ]q 6= 0. By the

above lemma, (γq ) = 1 implies that f(x) is not irreducible over Fq.
Then, by an earlier problem set, the quotient ring Fq [x] /(x2− [γ]q) will be a
two-dimensional vector space over Fq (since f(x) is a quadratic polynomial),
but not a field. Then we have that the quotient is simply the direct sum
Fq ⊕ Fq.
• Conversely, if we know that the quotient Fq [x] /(x2 − [γ]q) = Fq ⊕ Fq, is not

a field, and x2 − [γ]q 6= x2 in Fq [x], it must be that f(x) is not irreducible
over Fq, and thus that (γq ) = 1.

(2) Fq [x] /(x2 − [γ]q) = Fq2 if and only if
(
γ
q

)
= −1

proof

• If
(
γ
q

)
= −1, the polynomial f(x) = x2 − [γ]p does not have a root over Fq

and is therefore irreducible over that field. This implies that the quotient
Fq [x] /(x2 − [γ]p) is a field. Also, it will be a two-dimensional vector space
over Fq, and therefore Fq [x] /(x2− [γ]q) will be in bijection with Fq×Fq. This
last fact implies that Fq [x] /(x2 − [γ]q) has exactly q2 elements, and since it
is a field we get the result that Fq [x] /(x2 − [γ]q) = Fq2 .

• Conversely, if we know that the quotient Fq [x] /(x2 − [γ]q) = Fq2 , a field, it
must be that the polynomial f(x) defined above is irreducible over Fq and

therefore that
(
γ
q

)
= −1.

(3) Fq [x] /(x2 − [γ]q) = Fq/(x2) if and only if
(
γ
q

)
= 0

proof

•
(
γ
q

)
= 0 implies that γ ≡ 0 (mod q). Therefore, the polynomial f(x) =

x2−[γ]q is actually f(x) = x2. Immediately we get the result that Fq [x] /(x2−
γ) = Fq [x] /(x2).
• On the other hand, if we know that Fq [x] /(x2− [γ]q) = Fq [x] /(x2), (i.e. that

in Fq [x], f(x) = x2 ) then we have that γ ≡ 0 (mod q), and therefore that q

divides γ, implying that
(
γ
q

)
= 0.

�



CHAPTER 20

Totally ramified extensions

by David Costigan

(1) Prove that Z[ζpk ]/(p) = (Z/p)[t]/
(
t
dimQ Z[ζ

pk
]⊗ZQ

)
. We say that Z[ζpk ] is totally

ramified at p.

First, see that Z[ζpk ] ∼= Z[x]/(Ξpk), since ζpk is a primitive pk-th root of

unity and Ξpk is the unique irreducible polynomial whose roots are the pk-th

roots of unity (i.e., Ξpk is the pk-th cyclotomic polynomial). Ξpk is defined re-

cursively as Ξpk =
xp

k − 1∏
d|pk
d 6=pk

Ξd
. We also have that Ξ1 = x − 1 by definition. Next,

when we mod out by the ideal generated by p, we make the characteristic of

the ring equal to p. We can see that, in characteristic p, Ξpk =
(x− 1)p

k∏
d|pk
d 6=pk

Ξd
.

Then, in the product
∏
d|pk
d6=pk

Ξd, there are k terms, since the divisors of pk are

(1, p, . . . , pk−1). We can then write the denominator as Ξ1 ·Ξp · · ·Ξpk−1 . Using the
recursive definition of the cyclotomic polynomial, we can rewrite the denominator

as (x−1)· x
p − 1

x− 1
· xp

2 − 1

(x− 1)
(xp − 1)

x− 1

· · · . Since we are in characteristic p, we see that

xp
n −1 = (x−1)p

n
for any n ∈ N, so in characteristic p our denominator becomes

(x− 1) · (x− 1)p−1 · (x− 1)p
2−p · · · (x− 1)p

k−1−pk−2
, which collapses to (x− 1)p

k−1
.

So, we get that, in characteristic p, Ξpk =
(x− 1)p

k

(x− 1)pk−1 = (x − 1)p
k−pk−1

. From

project #12, we know that φ(pk) is equal to pk − pk−1, where φ is Euler’s to-

tient function. So we can write (x − 1)p
k−pk−1

= (x − 1)φ(pk), and we can write

Z[ζpk ] ∼= Fp[x]/(x−1)φ(pk) ∼= (Z/p)[x]/(x−1)φ(pk). We can do a change of variable
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of x− 1 to t and we get (Z/p)[t]/(t)φ(pk). Now, we note that the rank of a module
Z[ζpk ] over a ring Z imbeddable in a field Q is defined to be the dimension of the
tensor product Z[ζpk ] ⊗Z Q as a vector space over Q. Thus, dimQ Z[ζpk ] ⊗Z Q is
just the rank of the group generated by ζpk viewed as a Z-module, which we know

is φ(pk). Thus, we get that Z[ζpk ]/(p) = (Z/p)[t]/
(
t
dimQ Z[ζ

pk
]⊗ZQ

)
.

(2) Any element A of k[t]/(tn) acts on an n-dimensional vector space V , preserves a
filtration 0 = V0 ⊂ V1 ⊂ V2 ⊂ V3 ⊂ . . . ⊂ Vn = V with dim(Vi/Vi−1) = 1 and such
that there exists an l ∈ k so that A acts on Vi/Vi−1 by multiplication by l.

We can let V = k[t]/(tn), and we see that there is a filtration 0 = tnk[t]/(tn) ⊂
tn−1k[t]/(tn) . . . ⊂ tk[t]/(tn) ⊂ k[t]/(tn) = V . We see that V is an n-dimensional
vector, as required, because k[t]/(tn) can be viewed as an n-dimension vector space
over k. We also see that, as we move from left to right in the filtration, the dimen-
sion of the subspace increases by 1, so dim(Vi/Vi−1) = dim(Vi) - dim(Vi−1) = 1.
Any element A ∈ k[t]/(tn) acts on V by regular multiplication, so this property
is satisfied. We need only show that A acts on Vi/Vi−1 by multiplication of a
constant l ∈ k. To see this, take any element A = an−1t

n−1 + . . . + a1t + a0 and
multiply it by any Vi/Vi−1 = (tn−ik[t]/(tn))/(tn−i+1k[t]/(tn)). If we multiply A by
tn−i, we get tn−i ·(an−1t

n−1+. . .+a1t+a0) = an−1t
2n−i−1+. . .+a1t

n−i+1+a0t
n−i.

But we see that everything with an exponent greater than or equal to n − i + 1
gets sent to 0 in Vi/Vi+1, so the only term that remains is a0t

n−i. Thus, A acts
on Vi/Vi+1 by multiplication of the constant term a0 in A, and since a0 ∈ k, we
can let a0 = l to satisfy the proposition. This action also preserves the filtration,
since multiplication by an element of k cannot change the dimension of Vi/Vi−1.

(3) Let m be a squarefree number. At which primes is Om ramified? Prove that Om
ramifies only at p if and only if m = (−1)(p−1)/2p.

From problem #5, we can write Om = Z[α], where α = 1+
√
m

2 if m ≡ 1
(mod 4) and

√
m otherwise. From the definition of ramification, Om ramifies at

p if Om/(p) has a non-zero nilpotent element. We can write Om = Z[X]/f(x),
where f(x) is some irreducible quadratic polynomial. Om will ramify at p if, in
characteristic p, f(x) has a repeated root, i.e., f(x) can be factored into f(x) =
(f1(x))2 in characteristic p, because then there will be a non-zero element in
Om/(p) that, when squared, will equal 0. Now, take the two possible minimal
polynomials of α, which are X2−X + (1−m)/4 for m ≡ 1 (mod 4) and X2−m
for m 6≡ 1 (mod 4). We can factor these polynomials in Fp[X] as f1

e1 · f2
e2 . From

the quadratic formula −b±
√
b2 − 4ac

2a
, we see that a quadratic polynomial has a

repeated root iff its discriminant, b2−4ac, is equal to 0. Thus, f(x) has a repeated
root in Fp if its discriminant is 0 in Fp. So, we take the discriminants of the two
polynomials and find that the discriminant of X2 −X + (1−m)/4 is m, and the
discriminant of X2 −m is 4m. Thus, Om ramifies at p if and only if p divides m
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when m ≡ 1 (mod 4) and 4m when m 6≡ 1 (mod 4). Since we want Om to ramify
at exactly one prime, we must have that m ≡ 1 (mod 4), because 2|4m for all m,
so if m 6≡ 1 (mod 4) then 2 and p would both ramify in Om. For Om to ramify
at only p, we also need m = ±p. Note that m must be square free, so it cannot
be the square of a prime. Since some primes are 1 (mod 4) and some primes are
3 (mod 4), we need to“convert” all of the primes that are 3 (mod 4) to ones that

are 1 (mod 4). We do this by taking m = (−1)(p−1)/2p, since, with this value of
m, m ≡ 1 (mod 4) for all odd primes p, which follows from Question #18. So Om
ramifies only at p if and only if m = (−1)(p−1)/2p.

(4) Let R ⊆ Om be a subring, R 6= Z. Prove that a prime p ramifies in R if and only
if p ramifies in Om or p | #Om/R.

First, we see that R 6= Z because Z does not ramify at any prime p, since
Z/(p) is a field for any prime p.

Next, from above, we see that if Om ramifies at p, then p divides the discrim-
inant of the minimal polynomial x2 − x+ (1−m)/4 if m ≡ 1 (mod 4) or x2 −m
when m 6≡ 1 (mod 4). These discriminants are either m or 4m. Since Om = Z[α],
we can see that subrings of Om are of the form lZ[nα], where n, l ∈ N. This
is because subrings must contain the identity element of Om and be subgroups
of (Om,+). Subgroups of (Om,+) must be closed under addition, so the only
groups of this form are Z[nα]. Since we can make the subring smaller by multi-
plying the coefficients by a constant, we get that the subrings are lZ[nα]. The
minimal polynomials of lZ[nα] are now either x2 − x+ (1− n2m)/4 orx2 − n2m,
whose discriminants are either n2m or 4n2m, respectively. Since p divided either
m or 4m, p must also divide n2m or 4n2m, so R ramifies at p.

Next, assume that p does not ramify in Om. If p divides the order of Om/R,
then p(a+ bα+ (R)) = 0 in Om/R for some element (a+ bα) in Om, which means
that pa+pbα is 0 inOm/R, which means that pa+pbα is in R. But since p is prime,
and R is a subring that isn’t Om itself, you can’t have pa+ pbα as an element of
R unless the subring is Z[npα] where np is some multiple of p and n divides b.
Then, the minimal polynomial of Z[npα] is no longer either x2−x+ (1−m)/4 or
x2−m, as it was in Om; it becomes either x2−x+(1− (np)2m)/4 or x2− (np)2m.
The discriminants of these polynomials are now either (np)2m or 4(np)2m, which
means that the minimal polynomial has a repeated root in characteristic p since
p divides the discriminant, which means that Z[npα] ramifies at p, as claimed.



CHAPTER 21

Decomposition Theory of Cyclotomic Fields

by Constantin Gumenit,ă

Let p, q be distinct prime numbers. Recall that Γq = Aut(Q(ζq)).

(1) Deduce from Project 10 that Γq is cyclic.

(2) Use the orbit-stabilizer theorem to prove that Z[ζq]/(p) ∼= (Fp`)k where `k = q−1.

(3) Let G ⊆ Γq. Prove that (Z[ζq]/(p))
G, the fixed ring, is of dimension [Γq : G] over

Fp.
(4) Prove that ` is the least number such that q | p`− 1. (Note that this is consistent

with the fact that pq−1 ≡ 1 (mod q))

Solution:

(1) Deduce from Project 10 that Γq is cyclic.

Proof. In Project 13 we defined Γq = Aut(Q(ζq)) ∼= Aut(Q(ζq)/Q) ∼= (Z/q)×.
By Project 10, every finite subgroup of the multiplicative group k× of a field k is
cyclic. Since Γq ∼= (Z/q)× is the multiplicative subgroup of Z/q, Γq is cyclic.

�

(2) Use the orbit-stabilizer theorem to prove that Z[ζq]/(p) ∼= (Fp`)k where `k = q−1.

Proof. Z[ζq] ∼= Z[x]/(Φq(x)), where Φq(x) = xq−1 + ... + x + 1 is the mini-
mal polynomial of ζq over Z[x], and concurrently the q-th cyclotomic polynomial.

Hence, Z[ζq]/(p) ∼= (Z[x]/(Φq(x)))/(p) ∼= Z[x]/(Φq(x), p) ∼= (Z[x]/(p))/(Φq(x)) ∼=
(Z/pZ[x])/(Φq(x)) ∼= Fp[x]/(Φq(x)) where Φq(x) represents the residue class of
Φq(x) in Fp.

While Φq(x) is irreducible over Z[x], Φq(x) is not necessarily irreducible over

Fp[x]. Let Φq(x) factor over Fp[x] into Φq(x) =
∏

1≤i≤k
πi(x), deg(πi) = [Fp(ζq) :

Fp] = ` = degree of minimal polynomial of ζq over Fp.
By the Chinese Remainder Theorem, Fp[x]/(Φq(x)) ∼=

∏
1≤i≤k

Fp[x]/(πi(x)).

Each field Fp[x]/(πi(x)) has dimension deg(πi) = ` over Fp. |Fp[x]/(πi(x))| = p`.
By Project 11, any two finite fields of the same cardinality are isomorphic. Hence
Fp[x]/(πi(x)) ∼= Fp` .
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Therefore, Fp[x]/(Φq(x)) ∼=
∏

1≤i≤k
Fp[x]/(πi(x)) =

∏
1≤i≤k

Fp` = (Fp`)k. Z[ζq]/(p)

has cardinality pq−1 and (Fp`)k has cardinality p`k, and therefore p`k = pq−1 and
`k = q − 1 as desired.

�

(3) Let G ⊆ Γq. Prove that (Z[ζq]/(p))
G, the fixed ring, is of dimension [Γq : G] over

Fp.

Proof. Z[ζq] ∼= Z[x]/(Φq(x)), where Φq(x) = xq−1 + ...+x+1, is the splitting
field of Φq(x) over Z. We would like to find a basis for Z[ζq]. By Vieta’s formulas,

we have the following property of the roots of Φq(x):
∑

1≤i≤q−1

ζiq = −1, where

1 = ζqq . Hence, we only need q − 1 roots of unity to define a basis. Choose
{ζiq | 1 ≤ i ≤ q − 1} as a basis for Z[ζq].

Γq = Aut(Q[ζq]) acts on Z[ζq] = {a1ζq + · · ·+aq−1ζ
q−1
q | ai ∈ Z} by sending ζq

to ζmq , (m, q) = 1. G ⊆ Γq acts on Z[ζq] in a similar fashion. The ideal (p) ⊆ Z[ζq]
is the additive subgroup of Z[ζq] that contains all elements in Z[ζq] which are

multiples of p. In other words, for any element a1ζq + · · · + aq−1ζ
q−1
q ∈ (p),

ai | p. Any permutation of the basis of Z[ζq] leaves the coefficients ai untouched.
Therefore, G(p) = (p). Now we can conclude that G also acts on Z[ζq]/(p).

Act with G on Z[ζq]/(p). dimFp(Z[ζq]/(p))
G = |(Z[ζq]/(p))/G| and

|(Z[ζq]/(p))/G| = 1
|G|

∑
g∈G
|Z[ζq]/(p)

g| by Burnside’s lemma. At the same time,∑
g∈G
|Z[ζq]/(p)

g| = |Γq|. Therefore, dimFp(Z[ζq]/(p))
G =

|Γq |
|G| . But

|Γq |
|G| = [Γq : G]

by the orbit-stabilizer theorem. Hence, dimFp(Z[ζq]/(p))
G = [Γq : G].

�

(4) Prove that ` is the least number such that q | p`− 1. (Note that this is consistent
with the fact that pq−1 ≡ 1 (mod q))

Proof. First we will show that ` satisfies q | p` − 1, and then we will show
that ` is the least number for which this condition holds.

From part 2 we know that Φq(x) factors over Fp[x] into Φq(x) =
∏

1≤i≤k
πi(x)

with deg(πi) = `, and Z[ζq]/(p) ∼= Fp[x]/(Φq(x)) ∼=
∏

1≤i≤k
Fp[x]/(πi(x)), where

each πi has splitting field Fp` over Fp. Each πi has ` roots over its splitting
field and each root is a primitive q-th root of unity. Then, by Project 12, since
Fp` contains a primitive q-th root of unity, it contains all q-th roots of unity.
Hence, the q-th roots of unity form a subgroup of the multiplicative group of Fp` ,
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〈ζq〉 ⊆ (Fp`)×. By Lagrange’s Theorem, |〈ζq〉| | |(Fp`)×|. But |〈ζq〉| = |ζq| = q and

|(Fp`)×| = |Fp` | − 1 = p` − 1. Thus, q | p` − 1.

Now we will show that ` is the least number such that q | p` − 1. By part 2,
Fp` is the splitting field of πi over Fp and [Fp` : Fp] = deg(πi) = `. By definition,
Fp` is the smallest field extension over which πi splits. Consequently, ` is the
minimum number such that the division condition holds.

�



CHAPTER 22

ζp and
√

(−1)(p−1)/2

by Jonathan Roth

Theorem. q is a prime number.

(1) Let R be an integral domain totally ramified at a prime p over Z. Suppose S ⊆ R
with S 6= Z, and suppose pTorR/S =def {r ∈ R/S|pr = 0} is trivial. Then S is
ramified at p.

(2) If G is a subgroup of Γq then Z[ζq]
G is totally ramified at q and at no other primes.

(3) Let q be odd and G be the unique subgroup of Γq of index 2. Then Z[ζq]
G is a

subring of O(−1)(q−1)/2q and [O(−1)(q−1)/2q : Z[ζq]
G] is a power of q.

Proof. (1) We consider the natural map from S/pS into R/pR given by

ϕ :S/pS → R/pR

x̄ 7→ x̄

We note that ϕ is well-defined, since if x ≡ y mod pS, then x = y + ps for
some s ∈ S ⊆ R, and hence x ≡ y mod pR as well. Moreover, it is obvious that
ϕ is a homomorphism.

Now, observe that ker(ϕ) = {s̄ ∈ S/pS|∃r ∈ R s.t. s = pr}.

However, we can also construct the map

ψ : pTor(R/S)→ S/pS

r̄ 7→ p̄r

Then, by construction of pTor(R/S) and ψ, we have that imψ = {s̄ ∈
S/pS|∃r ∈ R s.t. s = pr} = ker(ϕ). And since by assumption pTorR/S = 0,
we have that ker(ϕ) = 0, and hence that ϕ is injective.

Thus, S/pS ' imϕ. By definition of total ramification, we have that R/pR '
Fp[t]/(td), where d = dimQR ⊗Z Q, and so S/pS is isomorphic to a subring

of Fp[t]/(td). Then to show that S is ramified at p, it suffices to show that
S/pS 6= Z/pZ. Indeed, if this is the case, then S/pS contains an element of the
form cd−1t

d−1 + . . .+ c1t+ c0, where ci ∈ Fp for all i, and ci 6= 0 for some i > 0.
But Z ⊂ S, and so Fp ⊆ S/pS. Thus, since S/pS is a subring, it also contains
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cd−1t
d−1 + . . . + c1t. By construction this element is non-zero, but equals zero

when raised to the d-th power, so S is ramified at p.
However, from Problem 14, since S is finitely generated as an abelian group,

we have that there exists a natural number k, primes p1, . . . , pn, and for each pi
natural numbers ej1, . . . , ej`i and rj1, . . . , rj`i such that

S ' Zk ⊕
k∏
i=1

`i∏
j=1

(Z/peji)rji

However, R is an integral domain, and so S ⊆ R is an integral domain and
hence torsion free. It thus must be that the terms to the right of the product
above are 0, so that S ' Zk. Moreover, since S 6= Z, we have that k 6= 1. Hence,
S/pS ' (Z/pZ)k 6= Z/pZ, as needed.

(2) First, observe that Z[ζq] is finitely generated as an abelian group, and hence
Z[ζq]

G ⊆ Z[ζq] is finitely generated as an abelian group. Therefore, by Problem
14, there exists a natural number k, primes p1, . . . , pn, and for each pi natural
numbers ej1, . . . , ej`i and rj1, . . . , rj`i such that as an additive group

Z[ζq]
G ' Zk ⊕

k∏
i=1

`i∏
j=1

(Z/peji)rji

However, Z[ζq]
G ⊆ Z[ζq] ⊆ Q(ζq) as an additive subgroup, and since Q(ζq) is

torsion-free, it must be that Z[ζq]
G is torsion-free as well. Therefore, as before,

the terms to the right of the product must be 0, so that Z[ζq]
G ' Zk as an additive

group.
Now, observe that if x ∈ Q[ζq]

G, then there exists n ∈ Z such that nx ∈ Z[ζq]
G.

Indeed, n can be taken to be the product of the denominators of the coefficients
on 1, ζq, ...ζ

q−1
q . Hence, we have that Z[ζq]

G ⊗Q ' Q[ζq]
G. Now, let d = [Γq : G].

Then by the Galois correspondence, dimQQ[ζq]
G = d, so dimQ Z[ζq]

G ⊗ Q = d.

Thus, we have Z[ζq]
G ⊗ Q ' Q[ζq]

G ' Qd. But then Z[ζq]
G ⊗ Q ' Zk ⊗ Q '

(Z⊗Q)k ' Qk, so it must be that k = d.

Hence, Z[ζq]
G ' Zd, so as an additive group, Z[ζq]

G/(q) ' Zd/(q) ' (Z/(q))d '
Fq[t]/(td), where d = dimQ Z[ζq]

G ⊗Q.

It remains to show that Z[ζq]
G/(q) ' Fq[t]/(td) as a multiplicative group as

well. To do this, let α be a generator of F×q , and recall that d = [Γq : G],

so that |G| = q−1
d . For any element k ∈ F×q , denote by γk the automorphism

ζq 7→ ζα
k

q . We claim that γd generates G. To see this, first observe that for

any a, b ∈ F×q , γa ◦ γb = γa+b, since (ζα
a

q )α
b

= ζα
a+b

q . In addition, α generates

F×q , so αkd ≡ 1 mod q for k = q−1
d , but not for any lesser k. Hence, (γd) =

{1, (γd), (γd)2, . . . , (γd)
q−2
d } = {1, γd, γ2d, . . . , γq−2}, which is cyclic of order q−1

d .
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But by Project 13, Γq is cyclic, and hence Γq has only one subgroup of order q−1
d .

Thus, we must have (γd) = G.
Now, we consider the orbit of the element ζαq . From the above characterization

of G, we have that Orb(ζαq ) = {ζαq , ζα
1+d

q , ζα
1+2d

q . . . ζα
1+(q−2)

q }. It follows directly

that η =def
∏(q−2)/d
k=0 (1− ζα1+dk

) is fixed by G , and hence η ∈ Z[ζq]
G.

We claim that η̄ generates Z[ζq]
G/(p). In order to show this, we first derive a

number of results relating to the elements of the form (1− ζi).

Result 1.
∏q−1
i=1 (1− ζi) = q

Proof. By construction of ζ, we have that

q−1∏
i=0

(t− ζi) = tq − 1

Factoring out (t− 1) from both sides, it follows that

q−1∏
i=1

(t− ζi) = tq−1 + tq−2 + . . .+ 1

Evaluating at t = 1 gives

q−1∏
i=1

(1− ζi) = 1q−1 + 1q−2 + . . .+ 1 = q,

as needed.
�

Result 2. If n is a natural number and x and y are in a ring R, then xn−yn
is divisible by x− y.

Proof. The statement is trivially true for n = 1. Suppose the statement
holds for n = 1, . . . , k.

Then

xk+1 − yk+1 = xk+1 − xyk + xyk − yk+1

= x(xk − yk) + (x− y)yk

Clearly, the second term is divisible by x−y. And by the inductive hypothesis,
the first term is divisible by x− y as well, so xk+1− yk+1 is divisible by x− y. �

Result 3. For any i, j ∈ {1, . . . , q− 1}, (1− ζi) = c(1− ζj), where c is a unit

Proof. It suffices to show that for any i ∈ {1, . . . , q−1}, there exists a unit c
such that (1−ζi) = c(1−ζ). To do this, observe that 1−ζi = 1i−ζi, so by Result
2, (1− ζi) = c(1− ζ), for some c. However, there exists some k for which ik ≡ 1
mod q, and hence 1 − ζ = 1k − (ζi)k. Thus, by Result 2, (1 − ζ) = c′(1 − ζi). It
then follows that c′c = 1, so that c is a unit as needed. �
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Result 4. For any d1, . . . , dq−1 ∈ {1, . . . , q− 1},
∏q−1
i=1 (1− ζdi) = cq, where c

is a unit.

Proof. From the previous result (1 − ζdi) = ci(1 − ζi), where ci is a unit.
Thus,

q−1∏
i=1

(1− ζdi) =

q−1∏
i=1

ci(1− ζi)

=

(
q−1∏
i=1

ci

)(
q−1∏
i=1

(1− ζi)

)
= cq

where c =def
∏q−1
i=1 ci, which is clearly a unit since the ci are units. �

Result 5. For any i ∈ {1, . . . , q − 1}, 1− ζi is not a unit.

Proof. It suffices to show that this holds for 1 − ζ, since for any i, (1 − ζi)
is merely a unit multiple of (1 − ζ). Suppose for contradiction that there exists
x ∈ Z[ζq] such that (1 − ζ)x = 1. Then x = c0 + c1ζ + . . . cq−1ζ

q−1 for some
c0, . . . , cq−1 ∈ Z. We have

(1− ζ)(c0 + c1ζ + . . .+ cq−1ζ
q−1) =

c0 + c1ζ + . . .+ cq−1ζ
q−1−

cq−1 + c0ζ + · · ·+ cq−2ζ
q−1 =

(c0 − cq−1) + (c1 − c2)ζ + . . .+ (cq−1 − cq−2)ζq−1 =

1

It follows that {
1 = c0 − cq−1

0 = c1 − c2 = . . . = cq−1 − cq−2

However, the second equation implies that c0 = . . . = cq−1, which contradicts
the first equation. Therefore, it must be that no such x exists, so that 1− ζ is a
non-unit. �

Result 6. Let I be a collection of q − 1 elements of {1, . . . , q − 1}. Let H be
a strict subcollection of I. Then

∏
h∈H(1− ζh) is not a multiple of q in Z[ζq].

Proof. By Result 4, we have that for some unit c,∏
i∈I

(1− ζi) = cq(59)

=⇒ c−1
∏
i∈I

(1− ζi) = q(60)
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Suppose, for contradiction, that∏
h∈H

(1− ζh) = pq(61)

where p ∈ Z[ζq] is not necessarily a unit.
Let µ =

∏
i 6∈H(1− ζi). Then using Equations 60 and 61, we have

c−1

∏
i 6∈H

(1− ζi)

(∏
h∈H

(1− ζh)

)
= q(62)

=⇒ c−1 · µ · pq = q(63)

=⇒ µ · (c−1p)q = q(64)

=⇒ µ(c−1p) = 1.(65)

This implies that µ =
∏
i 6∈H(1 − ζi) is a unit. However, from Result 5, we

know that (1 − ζi) is a not a unit for all i, and hence the product of such terms
cannot be a unit as well. Contradiction. It must be that Equation 61 cannot hold
for any p. �

Now, η is the product of q−1
d terms of the form (1 − ζi). Hence, ηd is the

product of q − 1 terms of this form, and thus ηd is a multiple of q by Result
4. However, by Result 6, q does not divide ηk for k = 1, . . . , d − 1. It fol-
lows that η̄ generates a subgroup of Z[ζq]

G/(q) of order qd. But as an additive

group, Z[ζq]
G/(q) ' Fq[t]/(td), so it has precisely qd elements. Thus, η̄ generates

Z[ζq]
G/(q) as a multiplicative group. It is then clear that the map sending η̄ to

t̄ is an isomorphism, so that Z[ζq]
G/(q) ' Fq[t]/(td) as a multiplicative group as

well.
Thus Z[ζq]

G is totally ramified at q.
Now, let p 6= q be prime. Suppose that Z[ζq]

G is totally ramified at p. Then by

definition, Z[ζq]
G ' Fp[t]/(td), where d = dimQ Z[ζq]

G⊗Q. The element identified
with t̄ is then nilpotent, so Z[ζq]

G is ramified at p. But Z[ζq]
G ⊆ Z[ζq], and so

this implies that Z[ζq] is ramified at p as well. However, since p and q are distinct
primes, by Problem 16.3, we have that Z[ζq] is unramified at p. Contradiction. It
must be that Z[ζq]

G is not totally ramified at p.
(3) Observe that since [Γq : G] = 2, we have that dimQQ[ζq]

G = 2. Now, let
α ∈ Q[ζq]

G such that α 6∈ Q. Then {1, α} forms a basis of Q[ζq]
G, and so

Q[ζq]
G = Q(α). In addition, since Q[ζq]

G is of degree 2, we have that {1, α, α2} is
linearly dependent. Hence, there is a polynomial f(x) = x2 +bx+c, with b, c ∈ Q,

such that f(α) = 0. But then by the quadratic formula, α = −b/2±
√
b2/4− c =

−b/2±
√

∆, where ∆ = b2/4− c. And ∆ must be square-free, since otherwise we

would have that α ∈ Q. Thus, since α generates Q[ζq]
G and α and

√
∆ differ only
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by a constant in Q, we have that Q[ζq]
G = Q(∆).

Hence, Z[ζq]
G ⊆ Q[ζq]

G = Q(
√

∆). However, we know that every element of
Z[ζq]

G is an algebraic integer, and hence that Z[ζq]
G ⊆ O∆.

Now, let p be a prime not equal to q. We consider the reduction map

ρ :Z[ζq]
G/(p)→ (Z[ζq]/(p))

G

x̄ 7→ x̄

It should be clear that this map is well-defined, since if x ∈ Z[ζq] is fixed by G,
then x must also be fixed by G when first modding out by p; that is if x ∈ Z[ζq]

G,
then gx = x for all g ∈ G, and so gx̄ = ḡx = x̄. In addition, ρ is obviously a
homomorphism.

Moreover, it can be shown that ρ is injective.1 It follows that Z[ζq]
G/(p) is

isomorphic to the image of ρ in (Z[ζq]/(p))
G. However, since p and q are distinct

primes, from Problem 16 we know that p is unramified in Z[ζq]. Thus, there are no
nilpotent elements in Z[ζq]/(p), and so it follows there are no nilpotents elements
in any subgroups of Z[ζq]/(p). We showed earlier, however, that Z[ζq]

G/(p) '
im ρ ⊆ (Z[ζq]/(p))

G ⊆ Z[ζq]/(p). Hence, Z[ζq]
G/(p) has no nilpotent elements,

and so Z[ζq]
G is not ramified at p.

We have thus shown that Z[ζq]
G is ramified at most at q. But we showed

earlier that Z[ζq]
G ⊆ O∆, where ∆ is square-free. From Problem 20.4, we have

that if p ramifies in O∆, then p ramifies in any subring, and so it follows that O∆

ramifies at most at q. Then applying the result of Problem 20.3, we have that
∆ = (−1)(q−1)/2, as needed.

In addition, from Problem 20.4, we have that if a prime p divides #O∆/Z[ζq]
G,

then p ramifies in Z[ζq]
G. But Z[ζq]

G ramifies at no primes other than q, and so it
must be that the only prime that divides #O∆/Z[ζq]

G is q. Thus, [O∆ : Z[ζq]
G] =

#O∆/Z[ζq]
G is a power of q.

�

1Professor Silberstein said that this can be assumed for the purposes of this proof



CHAPTER 23

Pulling it All Together

by Charles Jeon

Let G be as in the last section.

Problem 1. Prove that a prime p 6= q splits in Z [ζq]
G if and only if

(
p
q

)
= 1.

Proof. Note that in Problem 13, we have defined Γq = Aut (Q (ζq) /Q) = (Z/qZ)×

which sends the automorphism φl given by φl (ζq) = ζ lq for l ∈ (Z/qZ)×. This is inductive
because the reduction from Z → Z/qZ is injective on the q-th root of unity ζq. We also
know from Problem 21 that Γq is cyclic of order q − 1 and G is the unique subgroup of Γq
of index 2 by Problem 22. Let us consider G to be square elements of Γq. Then, we know

that the image of G in (Z/qZ)× is composed of all the multiplicative quadratic residues
mod q. If we now consider a prime p 6= q, we note that G takes the square root of q in

(Z/qZ)×. For this to be true, p ≡ n2 mod q for some n ∈ Z, so we have that
(
p
q

)
= 1 for

φp to be in G. �

Problem 2. Prove that a prime p 6= q splits in Z [ζq]
G if and only if p splits in

O
(−1)(q−1)/2q

.

Proof. Using the results from Problem 22, we are given that Z [ζq]
G is a subring

of O
(−1)(q−1)/2q

and
[
O

(−1)(q−1)/2q
: Z [ζq]

G
]

is a power of q. Therefore, if a prime p 6= q

splits in O
(−1)(q−1)/2q

, it has to split Z [ζq]
G. Note that we can also show this using Gauss-

sum τ =
∑

t

(
t
q

)
ζt where t ranges over all the non-zero residue classes mod q. Since

τ2 = (−1)(q−1)/2 q ∈ Z [ζq]
G, Z [ζq]

G = O
(−1)(q−1)/2q

. �

Problem 3. Deduce that
(
p
q

)
= (−1)(p−1)(q−1)/4

(
q
p

)
.

Proof. From the first problem, we have shown that p 6= q splits in Z [ζq]
G if and

only if
(
p
q

)
= 1. Moreover, from the second problem, this happens if and only if p splits

in O
(−1)(q−1)/2q

which is given as the ring of algebraic integers in Z
(√

(−1)(q−1)/2 q

)
in Problem 5. Using the result of Problem 19, prime p 6= q splits this if and only if(

(−1)(q−1)/2q
p

)
= 1. Now we use this to show the law of quadratic reciprocity.

63
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First, suppose that q ≡ 1 mod 4. Then, (−1)(q−1)/2 q = q, so we have that(
(−1)(q−1)/2 q

p

)
=

(
q

p

)
However, now, suppose that q ≡ 3 mod 4. Then,(

(−1)(q−1)/2 q

p

)
=

(
−q
p

)
=

(
−1

p

)(
q

p

)
=

+
(
q
p

)
if p ≡ 1 mod 4

−
(
q
p

)
if p ≡ 3 mod 4

This can be expressed compactly by

∴

(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
Another version of this proof using Gauss sums is shown below. �

Remark 1. Another version of law of quadratic reciprocity using Gauss sums and

showing τ2
q = (−1)(q−1)/2 q

Proof. If we denote ζ be a q-th root of unity, let the Gauss Sum τ be defined as

τq =
∑
t

(
t

q

)
ζt

where t ranges over all the non-zero residue classes mod q. Before proceeding with the

proof, let us show that τ2
q = (−1)

q−1
2 q. Starting with

τ2
q =

∑
r

∑
s

(
rs

q

)
ζr+s

we note that for a fixed s, the product rs goes all the non-zero residue classes (q is prime).
Therefore, if we replace r as rs,

τ2
q =

∑
r,s

(
rs2

q

)
ζrs+s =

∑
r,s

(
r

q

)
ζs(r+1)

=
∑
s

(
−1

q

)
ζ0 +

∑
r 6=q−1,s

(
r

q

)
ζs(r+1)

= (q − 1)

(
−1

q

)
+
∑
r 6=q−1

(
r

q

)∑
s

ζs(r+1)

However, for r 6= −1, we have that∑
s

ζs(r+1) = ζr+1 + ζ2(r+1) + · · ·+ ζ(q−1)(r+1)
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We note that this has to equal −1 because ζr+1 6= 1 and 1 + ζr+1 + · · · + ζ(q−1)(r+1) = 0.
Thus, τ2 now becomes

τ2
q = (q − 1)

(
−1

q

)
−
∑
r 6=q−1

(
r

q

)
= q

(
−1

q

)
−
∑
r

(
r

q

)

= q

(
−1

q

)
because there are equal number of +1 and −1 in the

∑
r

(
r
q

)
. Now, let us proceed back

to the problem by considering τpq mod p and the properties found in previous sections

τpq ≡ τq
(
τ2
q

) p−1
2 ≡ τq

(
q

(
−1

q

)) p−1
2

≡ τqq
p−1
2 (−1)

q−1
2

p−1
2

≡ τq

(
q

p

)
(−1)

q−1
2

p−1
2

If we evaluate τpq directly, we obtain

τpq ≡

(∑
t

(
t

q

)
ζt

)p
≡
∑
t

(
t

q

)p
ζtp

≡
(
p

q

)2∑
t

(
t

q

)
ζtp

≡
(
p

q

)∑
t

(
tp

q

)
ζtp

≡
(
p

q

)
τq

because p is both odd and prime. Using the two results, we have

τq

(
q

p

)
(−1)

q−1
2

p−1
2 ≡

(
p

q

)
τq

which leads us to

τ2
q

(
q

p

)
(−1)

q−1
2

p−1
2 ≡

(
p

q

)
τ2
q

However, τ2
q = ±q which is coprime to p (assumption), so we are left with(

p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
�


