Math 371, Spring 2013, PSet 1

Aaron Michael Silberstein

May 29, 2013

- 1. Give two nonisomorphic varieties of finite type over a given field with isomorphic, nontrivial étale fundamental groups.
- 2. Give two nonisomorphic fields of the same characteristic with isomorphic, nontrivial absolute Galois groups.
- 3. Give two fields of different characteristic with isomorphic, nontrivial absolute Galois groups.
- 4. Let L_1 and L_2 be two number fields, which are normal extensions over \mathbb{Q} . Let S_1 and S_2 be the set of primes of \mathbb{Q} which split completely in L_1 and L_2 , resp. If $S_1 = S_2$ then L_1 is isomorphic to L_2 (hint: use the Čebotarev density theorem).
- 5. Prove that $\hat{\mathbb{Z}} \simeq \prod_{p \text{ prime}} \mathbb{Z}_p$ and $\hat{\mathbb{Z}}^{\times} \simeq \prod_{p \text{ prime}} \mathbb{Z}/(p-1)\mathbb{Z} \times \mathbb{Z}_p$.
- 6. Prove that the only valuations on \mathbb{Q} are the *p*-adic valuations.
- 7. What are all the valuations on $\mathbb{Q}(t)$?
- 8. Classify the fields with no nontrivial valuation.
- 9. Classify the valuations on any subfield of $\overline{\mathbb{Q}}$.
- 10. Prove that the Brauer group of a finite field is trivial.
- 11. Prove that every self-homeomorphism of the underlying Zariski topological space of \mathbb{P}^2 over \mathbb{C} is induced by an automorphism (not necessarily over \mathbb{C}) of schemes. Is this true for any other algebraic surfaces?