Representation Theory, Sài Gòn, Summer 2014: Problem Set 1

Aaron Michael Silberstein

August 15, 2014

1. Prove the Peirce decomposition of an associative algebra: let e_{1}, \ldots, e_{n} be elements of a (not necessarily commutative) algebra A with identity 1 such that
(a) $e_{i} e_{j}=\delta_{i j} e_{i}$ (where $\delta_{i j}$ is the delta function, 1 if $i=j$ and 0 otherwise).
(b) $\sum_{i} e_{i}=1$.

We call this a complete, orthonormal collection of idempotents. Prove that, as an abelian group, $A=\bigoplus_{i, j} e_{i} A e_{j}$.
2. Let $\left\{f_{1}, \ldots, f_{n}\right\}$ be a basis of a finite-dimensional vector space V, and let $\left\{f_{1}^{*}, f_{2}^{*}, \ldots, f_{n}^{*}\right\}$ be the dual basis. Prove that the elements

$$
v \mapsto f_{i}^{*}(v) \cdot f_{i} \in \operatorname{End}(V)
$$

form a complete, orthonormal collection of idempotents of $\operatorname{End}(V)$. Use the Peirce decomposition to prove that, after choosing a basis of V, every endomorphism of V can be written as a matrix.
3. Let V be a finite-dimensional vector space V over an algebraically closed field k, $\operatorname{End}(V)$ the ring of k-linear maps from V to V, and $\operatorname{Aut}(V)$ the set of invertible elements of $\operatorname{End}(V)$. $\operatorname{Aut}(V)$ acts on the ring $\operatorname{End}(V)$ by conjugation. We say a function $\varphi: \operatorname{End}(V) \rightarrow k$ is algebraic if it is in the algebra generated by functions of the form $A \mapsto \phi(A v)$ (monomials) where $\phi \in V^{*}$, the dual space of V, and $v \in V$.
(a) We say that an element of $\operatorname{End}(V)$ is regular if it is conjugate to a linear transformation which is diagonal with all eigenspaces of dimension 1. Prove that there is an algebraic function $\varphi: \operatorname{End}(V) \rightarrow k$ such that an element A is not regular if and only if it is a zero of φ. Prove that we may take this algebraic function to have integer coefficients with respect to a suitable generating set of monomials (hint: matrix coefficients). Deduce that any algebraic function is determined by its values on the regular elements of $\operatorname{End}(V)$.
(b) Let $\lambda_{1}, \ldots, \lambda_{\ell}$ be a finite set of algebraically independent elements of a commutative k-algebra (that is, there are no nontrivial polynomial relations between them with coefficients in k). The m-th elementary symmetric polynomial $E_{m}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ (for $\left.1 \leq m \leq \ell\right)$ is defined by:

$$
\prod_{i=1}^{\ell}\left(x-\lambda_{i}\right)=\sum_{i=0}^{\ell} E_{m}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{\ell-m}
$$

Prove that any symmetric polynomial in the λ_{i} (any polynomial invariant under changing the indices of i) is a polynomial in the elementary symmetric polynomials.
(c) Let B be a basis of V. Prove that a conjugation-invariant function on $\operatorname{End}(V)$ is determined by its values on elements of $\operatorname{End}(V)$ regular and diagonalizable with respect to B. Prove that the restriction homomorphism of the algebra of conjugation-invariant functions to regular elements of $\operatorname{End}(V)$ diagonalizable on B is an isomorphism onto the symmetric functions of the eigenvalues.

