Minicourse on Quadratic Reciprocity: Supplementary Problems

Dr. Aaron Michael Silberstein

Sài Gòn, August 2013

1 Finite Fields

- 1. (Rabin's irreducibility test). Let $f(x) \in \mathbb{F}_{p^{\mu}}[x]$. Prove that f(x) is irreducible if and only if it divides $x^{p^{(\mu \deg f)}} x$ but not $x^{p^{(\mu k)}} x$ for any $k | \deg f$.
- 2. Let $f \in K[x]$ for a field. Prove that (f(x), f'(x)) = 1 if and only if f is squarefree in L[x] for every field L containing K.
- 3. Let $f(x) \in \mathbb{F}[x]$ for some finite field \mathbb{F} . Prove that if f is squarefree in $\mathbb{F}[x]$ then f is squarefree in every extension of \mathbb{F} . Prove that this is not true when I make $\mathbb{F} = F(t)$ for a finite field F. We say that finite fields are **perfect**.

2 Uchida's Theorem

This theorem appeared in the Osaka Journal of Mathematics, No. 14 (1977), pp. 155-157. Let R be a Dedekind domain — that is, R is an integral domain in which every prime ideal is maximal. Let K be the field of fractions of R, and let L be a finite extension of K. For each $\alpha \in L$ we let $\mu_{\alpha}(x)$ be its monic minimal polynomial over K; we call α R-integral if and only if $\mu_{\alpha}(x) \in R[x]$. The integral closure M of R in L is the set of all R-integral elements of L. We say that $M = R[\beta]$ if every element of M can be written as a polynomial with R-coefficients in R.

Recall that M is an R-module of rank [L:K].

- 1. Let \mathfrak{m} be a maximal ideal of R[X]. Prove that if \mathfrak{m} contains a monic polynomial, then \mathfrak{m} is of the form $\mathfrak{m} = (\mathfrak{p}, f(X))$ where \mathfrak{p} is a prime ideal of R and f(X) is an integral polynomial irreducible mod \mathfrak{p} .
- 2. Let $\alpha \in M$. Suppose there is a maximal ideal \mathfrak{m} of R[X] such that $\mu_{\alpha} \in \mathfrak{m}^2$. Using the above lemma, $\mathfrak{m} = (\mathfrak{p}, f(X))$ for some $f \in R[X]$. Show that there exists $t(X) \in R[X]$ and $p \in \mathfrak{p}$ such that $f(\alpha)t(\alpha)/p \in M$ but $f(\alpha)t(\alpha)/p \notin R[\alpha]$.

- 3. Prove the converse: if $\mu_{\alpha} \notin \mathfrak{m}^2$ for any maximal ideal $\mathfrak{m} \subseteq R[x]$, then $R[\alpha] = M$ (hint: prove that every maximal ideal is invertible).
- 4. Use this to prove that the ring of integers in $\mathbb{Q}[\zeta_n]$ is exactly $\mathbb{Z}[\zeta_n]$.