1	2	3	4	5	6	7	8	9	10	11	12	Total

Do not write above this line!

YOUR NAME (print):
MATH 114 - 001/002
Make-up 1st midterm
November 19, 2012

Your Section/Instructor's Name (circle one):
001/Pop 004/Cooper
Your TA (first name):

Rules:

- A single $8 \frac{1}{2}$ by 11 inch handwritten page (one sided) is permitted.
- No other written or printed materials or electronic devices are allowed.

Grading:

- There are 8 problems (with suggested answers) and 4 questions each worth 10 points.
- Do all problems, showing your work, and circling your answers.
- This is not a multiple choice exam! No credit will be given if you circle the right answer, but do not show the work leading to the answer.

Instructions:

- Be prepared to show your Penn ID if asked to do so.
- Write you name at the top of each page of the exam.
- Do not detach any of the pages of the exam.

Academic Integrity Statement:

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this Math 114 Midterm Exam.
Name (printed): Sontious Signature:

1. Consider the vector $\vec{v}=2 \vec{\imath}-\vec{\jmath}$, and the lines: L_{1} through the point $(0,1)$ and parallel to \vec{v}, respectively the line L_{2} through the point $(2,10)$ and perpendicular to \vec{v}. The intersection point of L_{1} and L_{2} is:
(a) $(0,3)$
(b) $(2,0)$
(c) $(-1,1)$
(d) $(0,0)$
$\vec{w}=\tilde{L}+2 \vec{j}$ is 1 to \vec{v}.

$$
\begin{array}{cc}
L_{1}: \vec{w} \cdot\langle x-0, y-1\rangle=0 & L_{2}: \vec{V} \cdot\langle x-2, y-10\rangle=0 \\
x+2(y-1)=0 & 2(x-2)-(y-10)=0 \\
x+2 y-2=0 & -2+2 y-2=0 \\
2 x-y+6=0 & 2 y=4 \\
5 x+10=0 & y=2 \\
x=-2 &
\end{array}
$$

2. Find $\vec{r}(1)$, provided $\vec{r}(t)$ satisfies:

$$
\begin{gathered}
\frac{d^{2} \vec{r}}{d t^{2}}=\left(-t^{2}, 1,-t\right), \frac{d \vec{r}}{d t}(1)=\left(\frac{2}{3}, 0,0,0\right), \quad \vec{r}(0)=(1,-1,0) . \\
\frac{d \vec{r})}{\left(\frac{23}{2},-\frac{3}{2}, \frac{1}{3}\right)} \cdot\left(2,-\frac{1}{2}, 0\right) \text { c) }(2,1,0) \text { d) }(2,-1,1) \text { e) }(2,0,-1) \text { f) }\left(\frac{23}{2}, 0,0\right) \\
\frac{d \vec{r}}{d t}=\left\langle-\frac{1}{3} t^{3}+a, t+b,-\frac{1}{2} t^{2}+c\right\rangle=\left\langle-\frac{1}{3} t^{3}+1, t-1,-\frac{1}{2} t^{2}+\frac{1}{2}\right\rangle \\
\frac{d \vec{r}}{d t}(1)=\left\langle-\frac{1}{3}+a, 1+b,-\frac{1}{2}+c\right\rangle=\left\langle\frac{2}{3}, 0,0\right\rangle \\
a=1, b=-1, c=\frac{1}{2} \\
\vec{r}(t)=\left\langle-\frac{1}{12} t^{4}+t+d, \frac{1}{2} t^{2}-t+e,-\frac{1}{6} t^{3}+\frac{1}{2} t+f\right\rangle \\
\vec{r}(0)=\langle d, e, f\rangle=\langle 1,-1,0\rangle \\
\vec{r}(t)=\left\langle-\frac{1}{1} \frac{1}{2} t^{2}+t+1, \frac{1}{2} t^{2}-t-1,-\frac{1}{6} t^{3}+\frac{1}{2} t\right\rangle \\
\vec{r}(1)=\left\langle 2-\frac{1}{12}, \frac{1}{2}-2,-\frac{1}{6}+\frac{1}{2}\right\rangle
\end{gathered}
$$

3. The point on the intersection line of the planes $2 x-y-z=2$ and $x+y+z-1=0$ which is closest to the point $(9,0,-1)$ is:
(a) $\left(9,1, \frac{1}{2}\right)$
(b) $\left(0,9,-\frac{1}{2}\right)$
(c) $\left(-1,-\frac{1}{2}, 0\right)$
(d) $\left(1, \frac{1}{2},-\frac{1}{2}\right)$

$$
\begin{aligned}
& \vec{n}_{1}=\left\langle z_{1},-1,-1\right\rangle \vec{n}_{2}=\langle 1, \mid, 1\rangle \\
& \vec{n}_{1} \times \vec{n}_{2}=\left|\begin{array}{ccc}
i & j & k \\
2 & -1 & -1 \\
1 & 1 & 1
\end{array}\right|=i\left|\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right|-j\left|\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right|+k\left|\begin{array}{ccc}
2 & -1 \\
11
\end{array}\right|
\end{aligned}
$$

$=\langle 0,-3,3\rangle \quad$ direction of line
Point on intersection $\quad 2 x-y-z=2$

$$
\begin{aligned}
& \quad(1,0,0) \quad \frac{x+y+z=1}{3 x=3} \quad t=\frac{-6}{2 \cdot 18}=\frac{-1}{6} \\
& L:\langle 1,-3 t, 3 t\rangle \\
& d^{\prime}(t)=8^{2}+(-3 t)^{2}+(-1-3 t)^{2}=65+18 t^{2}+6 t
\end{aligned}
$$

4. Which of the following planes contains the x-axis and is perpendicular on the plane $3 x-y+z=20 ?$
(a) $y-2 z=0$
(b) $2 y+z=0$
$\begin{array}{ll}\text { (c) } x=-z & \text { (d) } z=1\end{array}$

Contains x-axis: $(x, 0,0)$ solves foray x.
a), b) f)

$$
\begin{array}{ll}
\vec{n}=\langle 3,-1,1\rangle & \vec{n}_{a}=\langle 0,1,-2\rangle \\
& \vec{n}_{b}=\langle 0,2,1\rangle \\
\vec{n} \cdot \vec{n}_{f}=0 & \vec{n}_{f}=\langle 0,2,2\rangle
\end{array}
$$

5. Find the distance from the x-axis to the intersection line of the planes $x+y+z-1=0$ and $-2 x-2 y+z=1$.

$$
\begin{array}{r}
\vec{n}_{1}=\langle 1,1,1\rangle \quad \vec{n}_{z}=\langle-2,-2, \mid\rangle \\
\left.\vec{n}_{1} \times \vec{n}_{2}=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 1 \\
-2 & -2 & 1
\end{array}\right|=i\left|\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right|-j \right\rvert\, \\
=3 i-3: \\
x+y+z-1=0 \\
-2 x-2 y+z-1=0 \quad \text { (c) } \quad= \\
3 z-3=0 \quad \text { distance } \\
z=1
\end{array}
$$

(e) $\sqrt{3}$
(f) $\sqrt{4}$

$$
\vec{n}_{1} \times \vec{n}_{2}=\left|\begin{array}{ccc}
i & j & k \\
1 & 1 & 1 \\
-2 & -2 & 1
\end{array}\right|=i\left|\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right|-j\left|\begin{array}{cc}
1 & 1 \\
-2 & 1
\end{array}\right|+k\left|\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right|
$$

$$
=3 i-3 j=\langle 3,-3,0\rangle
$$

$$
L:\langle 3 t,-3 t, 1\rangle
$$

distance to x-axis:

$$
\left.d^{2}(t)=(y-t)\right)^{2}+(z(t))^{2}
$$

$$
=9 t^{2}+1 \quad \text { smallest value is } \text { (when } t=0 \text {.) }
$$

6. Let L be the line tangent to the trajectory $\vec{r}(t)=\left(\cos ^{2}(t), \sin (t)+1,-\frac{1}{2} t^{2}+t+2\right)$ at the point $\vec{r}(0)$. Then the angle (in) of L with the $x y$-plane is:
(a) 0
(b) $\pi / 2$
(c) $\pi / 3$
(d) $\pi / 4$
(e) $\pi / 6$
(f) $-\pi / 2$
$\vec{r}^{\prime}(t)=\langle-2 \sin t \cos t, \cos t,-t+1\rangle$

$$
\vec{r}^{\prime}(0)=\langle 0,1,1\rangle
$$

$$
\vec{n}=\langle 0,0,1\rangle
$$

angle between $\vec{r}^{\prime}(0)$ ad $\vec{n}: \arccos \left(\frac{1}{\sqrt{2}-1}\right)=\frac{\pi}{4}$ ayle between $\vec{f}^{\prime}(0)$ ad xyplare $\frac{\pi}{2}-\pi / 4=\pi / 4$
7. Consider the unit vectors $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ having all the components positive numbers, and satisfying: \vec{u}_{1} is parallel to the line through the origin and $(-3,-1,-1) ; \vec{u}_{2}$ is parallel the intersection line of $x-y-3 z=0$ and $-x+2 y+2 z=0$, and \vec{u}_{3} is a multiple of $3 \vec{\imath}+\vec{\jmath}+2 \vec{k}$. Then the volume of the parallelepiped spanned by $\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}$ is:
a) $\frac{1}{4 \sqrt{63}}$
b) $\frac{1}{5 \sqrt{33}}$
c) $\frac{1}{\sqrt{331}}$
d) $\frac{1}{10 \sqrt{21}}$
e) $\frac{1}{6 \sqrt{77}}$
f) $\frac{1}{12 \sqrt{13}}$

$$
\begin{aligned}
& \text { Let } v_{1}=\langle 3,1,1\rangle, v_{2}=\left|\begin{array}{ccc}
i & 0 & 0 \\
1 & -1 & -3 \\
-1 & 2 & 2
\end{array}\right|=i\left|\begin{array}{ccc}
-1 & -3 \\
2 & 2
\end{array}\right|-j\left|\begin{array}{cc}
1 & -3 \\
1 & 2
\end{array}\right|+2\left|\begin{array}{l}
1-1 \\
12
\end{array}\right| \\
& v_{3}=\langle 3,1,2\rangle \text {. } \\
& \text { Then } v_{1}=\frac{v_{1}}{\left|v_{1}\right|} v_{2}=\frac{v_{2}}{|\sqrt{2}|} v_{3}=\frac{v_{3}}{\left|v_{3}\right|} \\
& \left(U_{1} \times v_{2}\right) \cdot v_{3}=\frac{1}{\left|v_{1}\right| W_{2}\left|v_{3}\right|}\left(v_{1} \times v_{2}\right) \circ v_{3} \\
& =\frac{1}{\sqrt{11} \sqrt{18} \sqrt{14}}\left|\begin{array}{lll}
3 & 1 & 2 \\
4 & 1 & 1 \\
3 & 1
\end{array}\right|=\frac{1}{6 \sqrt{27}} \cdot\left(3\left|\begin{array}{cc}
1 & 1 \\
1
\end{array} 1-1\right| \begin{array}{ll}
4 & 1 \\
31
\end{array}|+2| \begin{array}{ll}
4 & 1 \\
31
\end{array} 1\right) \\
& \text { 8. Consider the statements: }
\end{aligned}
$$

(i) The curvature of the curve $x=3 \cos (t), y=5+3 \sin (t), z=1$ is equal to $\frac{1}{2}$.
(ii) If the acceleration of a motion $\vec{r}(t)=(x(t), y(t), z(t))$ is everywhere zero, then the trajectory of the motion is a circle.
Which of the following assertions is true?
a) (i) only
b) (ii) only
c) (i) and (ii)
d) neither of
(i) and (ii)
e) (ii) is true if $t<0$
f) none of the above

$$
\text { i) circle of radius } 3 \Rightarrow K=\frac{1}{3} \text {. }
$$

ii) $\vec{r}(t)=\langle t, t, t\rangle$ has $\vec{r}^{\prime}(t)=\langle 1,1,1\rangle \vec{r}^{\prime \prime}(t)=\overrightarrow{0}$ But \vec{r} traces a like.
9. Find the value of the x-coordinate where the plane through the points $(4,1,1),(1,2,1)$, and ($1,1,2$) intersects the x-axis.
a) 14
b) 10
c) 8
d) 5
e) 3
f) 1

$$
\begin{aligned}
& \vec{v}=\langle 3,-1,0\rangle \quad \vec{w}=\langle 3,0,-1\rangle \\
& \vec{n}=\vec{v} \times \vec{w}=\left|\begin{array}{ccc}
i & j & k \\
3 & -1 & 0 \\
3 & 0 & -1
\end{array}\right|=i\left|\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right|-j\left|\begin{array}{cc}
3 & 0 \\
3 & -1
\end{array}\right|+k\left|\begin{array}{cc}
3 & -1 \\
3 & 0
\end{array}\right| \\
& =i+3 j+3 k \\
& \text { P: } 1(x-1)+3(y-1)+3(z-2)=0 \\
& x-1+3(-1)+3(-2)=0 \\
& x=1+3+6=10
\end{aligned}
$$

10. The space curves define by the following vector-valued functions $\vec{r}(t)=\left(t, \sin (t), t^{4}\right)$ and $\vec{s}(t)=\left(t^{3}, t, \sin (t)\right)$ intersect at the point $\vec{r}(0)=(0,0,0)=\vec{s}(0)$. Then the angle (in radians) between the two curves at the point $(0,0,0)$ is:
a) 0
b) $\pi / 6$
c) $\pi / 4$
d) $\pi / 3$
e) $\pi / 2$
f) $2 \pi / 3$

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\left\langle 1, \cos t, 4 t^{3}\right\rangle \quad \vec{r}^{\prime}(\theta=\langle 1,1,0\rangle \\
& \vec{S}^{\prime}(t)=\left\langle 3 t^{2}, 1, \cos t\right\rangle \quad S^{\prime}(0)=\langle 0,1,1\rangle \\
& \vec{S}^{\prime}(0) \cdot \vec{r}^{\prime}(0)=1=\sqrt{2} \sqrt{2} \cos \theta . \\
& \text { So } \theta=\arccos \frac{1}{2}=\pi / 3
\end{aligned}
$$

11. Answer whether the following is true or false, and give a reason / counterexample: The vector $(\vec{\jmath} \times(\vec{k} \times \vec{\imath})) \times \vec{\imath}$ is a unit vector, ie., has length one.

$$
(\vec{j} \times(\vec{i} \times i)) \times r=(\vec{j} \times(\vec{j})) \times i=0 \times \vec{i}=\overrightarrow{0}
$$

12. Answer whether the following is true or false, and give a reason / counterexample:
(a) If $\vec{v} \perp \vec{w}$, then $3 \vec{v}+2 \vec{w}$ and $-3 \vec{v}+2 \vec{w}$ have the same length. TRUE (b) If $3 \vec{v}+2 \vec{w}$ and $-3 \vec{v}+2 \vec{w}$ have the same length, then $\vec{v} \perp \vec{w}$.

$$
|3 \vec{v}+2 \vec{v}|^{2}=(3 \vec{v}+2 \vec{w}) \cdot(3 \vec{v}+2 \vec{v})
$$

$$
=9 \vec{v} \cdot \vec{v}+6 \vec{v} \cdot \vec{w}+6 \vec{w} \cdot \vec{v}+4 \vec{w} \cdot \vec{w}
$$

$$
=9|\vec{v}|^{2}+2 \vec{v} \cdot \vec{w}+4|\vec{w}|^{2}
$$

$$
|-3 \vec{v}+2 \vec{w}|^{2}=9|\vec{v}|^{2}-12 \vec{v} \cdot \vec{w}+4|\vec{w}|^{2}
$$

a) If $\vec{v} \perp \vec{w}$, then $\vec{v} \cdot \vec{w}$, so both leith are $\left||\vec{v}|^{2}+\psi / \vec{\omega}\right|^{2}$

