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INALIVIE.

1. Consider the vector v = 27 — 7, and the lines: L; through the point (0, 1) and parallel
to v, respectively the line Lo through the point (2,10) and perpendicular to v. The

intersection point of L; and Lo is:
(@) (0,3)  (b) (2,0) (o) (=1,1) (d) (0,0) (f) (1,1)
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2. Find 7 (1), provided 7 (t) satisfies:
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INALIVIE.

3. The point on the intersection line of the planes 2z —y —z=2and x+y+2—-1=0
which is closest to the point (9,0, —1) is
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4. Which of the following planes contains the z-axis and is perpendicular on the plane
3z —y +z = 207

(a) y—22=0 (b) 2y+2=0 (¢c) z=—2 (d) z2=1 (e) x+2y_
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INALVIE.

5. Find the distance from the z-axis to the intersection line of the planes xt+y+2—1 =10
and -2z — 2y + 2z = 1.
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6. Let L be the line tangent to the trajectory r(t) = (cos®(t),sin(t) + 1, —lt +t+2)
at the point 7 (0). Then the angle (inzsdizmg) of L with the xy-plane is:
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INALIVIE.

7. Consider the unit vectors u, w2, us having all the components positive numbers, and
satisfying: wu; is parallel to the line through the origin and (=3, —1, —1); u is parallel
the intersection line of x —y — 32 = 0 and —x + 2y + 2z = 0, and w3 is a multiple of

e spanngd by w1, ug, ug is:

37+ 7 + 92k. Then the volume of the parallelepip
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8. Consider the statements: ém ( O \

(i) The curvature of the curve z = 3cos(t),y = 5+ 3sin{(t), z = 1 is equal to 1.
(ii) If the acceleration of a motion 7 (t) = (x(t), y(t), z(t ) is everywhere zero, then
the trajectory of the motion is a circle.

Which of the following assertions is true?

a) (i) only b) (ii) only c¢) (i) and (i)y” d) neith (i) and (ii) e) (ii) is true if £ < 0
) none of the above
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INALIVIE.

9. Find the value of the z-coordinate where the plane through the points (4,1, 1), (1,2, 1),

and (1,1, 2)4ntexgects the z-axis.
a,)14c)8 d) 5 e) 3 f) 1
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10. The space curves define by the following vector-valued functions r(t) = (¢,sin(t), t*)
and s(t) = (¢3,¢,sin(¢)) intersect at the point r(0) = (0,0,0) = s(0). Then the angle
(in radians) between the two curves at the point (0,0, 0) is:

a) 0 b) /6 ¢) m/4 e) /2 £) 27/3
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INALIVIE.

11. Answer whether the following is true or false, and give a reason / counterexample:

The vector (7 x (k x 7)) x 7 is a unit vector, i.e., has length one.
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12. Answer whether the following is true or false, and give a reason f coupterexample:
(a) If v L w, then 3v + 2w and —3v + 2w have the same length. Vle
(b) If 3v + 2w and —3v + 2w have the same length, then v 1 w. %\)6‘
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