1	2	3	4	6	7	8	9	10	11	12	Total	

Do not write above this line!

YOUR NAME (print):

MATH 114 - 001/002

Make-up 1st midterm

November 19, 2012

Your Section/Instructor's Name (circle one):	001/Pop	004/Cooper
Your TA (first name):		

Rules:

- A single $8\frac{1}{2}$ by 11 inch handwritten page (one sided) is permitted.
- No other written or printed materials or electronic devices are allowed.

Grading:

- There are 8 problems (with suggested answers) and 4 questions each worth 10 points.
- Do all problems, **<u>showing your work</u>**, and *circling* your answers.
- This is not a multiple choice exam! No credit will be given if you circle the right answer, but do not show the work leading to the answer.

Instructions:

- Be prepared to show your Penn ID if asked to do so.
- Write you name at the top of each page of the exam.
- <u>Do not detach</u> any of the pages of the exam.

Academic Integrity Statement:

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this Math 114 Midterm Exam.

Name (printed): ______ Signature:

1. Consider the vector $\vec{v} = 2\vec{i} - \vec{j}$, and the lines: L_1 through the point (0, 1) and parallel to \vec{v} , respectively the line L_2 through the point (2, 10) and perpendicular to \vec{v} . The intersection point of L_1 and L_2 is:

(a)
$$(0,3)$$
 (b) $(2,0)$ (c) $(-1,1)$ (d) $(0,0)$ (e) $(-2,2)$ (f) $(1,1)$
 $\vec{W} = \vec{L} + 2\vec{J}$ is $\vec{L} \neq \vec{V}$.
 $\vec{L} : \vec{W} \cdot \langle x - 0, y - 1 \rangle = 0$
 $x + 2(y-1) = 0$
 $x + 2(y-1) = 0$
 $x + 2y - 2 = 0$
 $2x - y + 6 = 6$
 $5x + 10 = 0$
 $x = -2$

2. Find $\vec{r}(1)$, provided $\vec{r}(t)$ satisfies:

$$\frac{d^{2}\vec{r}}{dt^{2}} = (-t^{2}, 1, -t), \quad \frac{d\vec{r}}{dt}(1) = (\frac{2}{3}, 0, \frac{1}{3}), \quad \vec{r}(0) = (1, -1, 0).$$

a) $(\frac{23}{12}, -\frac{3}{2}, \frac{1}{3})$ b) $(2, -\frac{1}{2}, 0)$ c) $(2, 1, 0)$ d) $(2, -1, 1)$ e) $(2, 0, -1)$ f) $(\frac{23}{2}, 0, 0)$

divide $\vec{r} = \langle -\frac{1}{3}t^{3} + \alpha, t + b, -\frac{1}{2}t^{2} + C \rangle = \langle -\frac{1}{3}t^{3} + |t - 1, -\frac{1}{2}t^{2} + \frac{1}{2} \rangle$

divide $\vec{r} = \langle -\frac{1}{3}t^{3} + \alpha, t + b, -\frac{1}{2}t^{2} + C \rangle = \langle -\frac{1}{3}t^{3} + |t - 1, -\frac{1}{2}t^{2} + \frac{1}{2} \rangle$

divide $\vec{r} = \langle -\frac{1}{3}t^{3} + \alpha, t + b, -\frac{1}{2}t^{2} + C \rangle = \langle -\frac{1}{3}t^{3} + |t - 1, -\frac{1}{2}t^{2} + \frac{1}{2} \rangle$

divide $\vec{r} = \langle -\frac{1}{3}t^{3} + \alpha, t + b, -\frac{1}{2}t^{2} + C \rangle = \langle -\frac{1}{3}t^{3} + \frac{1}{3}t^{2} + \frac{1}{2} \rangle$

divide $\vec{r} = \langle -\frac{1}{3}t^{4} + t + d, \frac{1}{2}t^{2} - t + e, -\frac{1}{6}t^{3} + \frac{1}{2}t^{4} + \frac{1}{7} \rangle$

 $\vec{r}(t) = \langle -\frac{1}{12}t^{4} + t + d, \frac{1}{2}t^{2} - t - 1, -\frac{1}{6}t^{3} + \frac{1}{2}t^{4} + \frac{1}{7} \rangle$

 $\vec{r}(t) = \langle -\frac{1}{12}t^{2} + t + 1, \frac{1}{2}t^{2} - t - 1, -\frac{1}{2}t^{3} + \frac{1}{2}t^{5} \rangle$

 $\vec{r}(t) = \langle 2 -\frac{1}{12}t^{2} + t + 1, \frac{1}{2}t^{2} - t - 1, -\frac{1}{2}t^{3} + \frac{1}{2}t^{5} \rangle$

 $\vec{r}(t) = \langle 2 -\frac{1}{12}t^{2} + \frac{1}{2}t^{2} - t - 1, -\frac{1}{2}t^{3} + \frac{1}{2}t^{5} \rangle$

3. The point on the intersection line of the planes 2x - y - z = 2 and x + y + z - 1 = 0which is closest to the point (9, 0, -1) is: (a) $(9,1,\frac{1}{2})$ (b) $(0,9,-\frac{1}{2})$ (c) $(-1,-\frac{1}{2},0)$ (d) $(1,\frac{1}{2},-\frac{1}{2})$ (e) $(-1,-\frac{1}{2},-\frac{3}{2})$ (f) (2, 0, 9) $\vec{\eta}_1 = (2, -1, -1)$ $\vec{\eta}_2 = (1, 1, 1)$ $\vec{n}_1 \times \vec{n}_2 = \begin{vmatrix} i & j & k \\ z - i & 1 \\ 1 & 1 & 1 \end{vmatrix} = i \begin{vmatrix} -i & -i \\ 1 & 1 & 1 \end{vmatrix} - j \begin{vmatrix} z & -1 \\ 1 & 1 & 1 \end{vmatrix} + k \begin{vmatrix} z - 1 \\ 1 & 1 \end{vmatrix}$ = <0,-3,3> direction of line of intersection Point on intersection Zx-y-Z=2 $\frac{x + y + 2}{3x = 3} = \frac{-6}{2.18} = \frac{-1}{6}$ $(1, \mathcal{O}, \mathcal{O})$ L: <1,-3t,3t> $d'(t) = 8^{2} + (-3t)^{2} + (-1-3t)^{2} = 65 + 18t^{2} + 6t$ 4. Which of the following planes contains the x-axis and is perpendicular on the plane 3x - y + z = 20? (a) y-2z = 0 (b) 2y+z = 0 (c) x = -z (d) z = 1 (e) x+2y = 0 (f) 2y = -2zConteins x-axis: (X,0,0) solves for any X. a), b), f) $\vec{n} = \langle O, | -2 \rangle$ $n = \langle 3, -1, 1 \rangle$ $\hat{N}_{n} = \langle O, 2, 1 \rangle$ nf= <0,2,2> $\vec{n} \cdot \vec{n}_{f} = 0$

.

5. Find the distance from the x-axis to the intersection line of the planes
$$x + y + z - 1 = 0$$

and $-2x - 2y + z = 1$.
(a) -1 (b) 0 (c) 1 (d) $\sqrt{2}$ (e) $\sqrt{3}$ (f) $\sqrt{4}$
 $\vec{n}_{1} = \langle 1, 1, 1 \rangle$ $\vec{n}_{2} = \langle -2, -2, 1 \rangle$
 $\vec{n}_{1} \times \vec{n}_{2} = \begin{cases} i j k \\ 1 - 2 - 2i \end{cases} = i \begin{vmatrix} 1 \\ 2i \end{vmatrix} - j \begin{vmatrix} 1 \\ -2i \end{vmatrix} - j \begin{vmatrix} 1 \\ 2i \end{vmatrix} + k \begin{vmatrix} 1 \\ -2i \end{vmatrix}$
 $= 3 \langle -3 \rangle = \langle 3, -3 \rangle =$

7. Consider the unit vectors $\vec{u}_1, \vec{u}_2, \vec{u}_3$ having all the components positive numbers, and satisfying: \vec{u}_1 is parallel to the line through the origin and (-3, -1, -1); \vec{u}_2 is parallel the intersection line of x - y - 3z = 0 and -x + 2y + 2z = 0, and \vec{u}_3 is a multiple of $3\vec{i} + \vec{j} + 2\vec{k}$. Then the volume of the parallelepiped spanned by $\vec{u}_1, \vec{u}_2, \vec{u}_3$ is: a) $\frac{1}{4\sqrt{63}}$ b) $\frac{1}{5\sqrt{33}}$ c) $\frac{1}{\sqrt{331}}$ d) $\frac{1}{10\sqrt{21}}$ e) $\frac{1}{6\sqrt{77}}$ f) $\frac{1}{12\sqrt{13}}$ $(2 + v_1 = \langle 3, 1, 1 \rangle, v_2 = \begin{vmatrix} i & j & k \\ 1 - 1 & 3 \end{vmatrix} = i \begin{vmatrix} -1 & -3 \\ 2 & 2 \end{vmatrix} - j \begin{vmatrix} 1 & -3 \\ -1 & 2 \end{vmatrix} + \begin{vmatrix} i & 2 \\ -1 & 2 \end{vmatrix}$ $= \langle S, I, 2 \rangle$. $U_1 = \frac{V_1}{|V_1|} \quad U_2 = \frac{V_2}{|V_2|} \quad U_3 = \frac{V_3}{1}$ $(U, \times U_2) \circ V_3 = \frac{1}{|V_1||V_2||V_3|} (V, \times V_2) \circ V_3$ 8. Consider the statements: (i) The curvature of the curve $x = 3\cos(t), y = 5 + 3\sin(t), z = 1$ is equal to $\frac{1}{2}$.

(ii) If the acceleration of a motion $\vec{r}(t) = (x(t), y(t), z(t))$ is everywhere zero, then the trajectory of the motion is a circle.

Which of the following assertions is true?

a) (i) only b) (ii) only c) (i) and (ii) d) neither of (i) and (ii) e) (ii) is true if t < 0 f) none of the above

i) Circle of rodius
$$S \Rightarrow K = \frac{1}{3}$$

ii) $F(t) = \langle t, t, t \rangle$ has $F'(t) = \langle 1, 1, 1 \rangle \tilde{F}'(t) = \tilde{O}$
Bf F traces a line.

9. Find the value of the x-coordinate where the plane through the points (4, 1, 1), (1, 2, 1), and (1, 1, 2) intersects the x-axis.

a) 14 (b) 10 c) 8 d) 5 e) 3 f) 1

$$\vec{y} = \langle 3, -1, 6 \rangle$$
 $\vec{w} = \langle 3, 0, -1 \rangle$
 $\vec{n} = \vec{y} \times \vec{w} = \begin{vmatrix} i & j & k \\ 3 - 1 & 6 \\ 3 & 6 - 1 \end{vmatrix} = i \begin{vmatrix} -1 & 0 \\ 0 - 1 \end{vmatrix} - j \begin{vmatrix} 3 & 0 \\ 3 & -1 \end{vmatrix} + k \begin{vmatrix} 3 & -1 \\ 3 & 0 \end{vmatrix}$
 $= i + 3j + 3K$
 $\vec{y} = 2 = 0$
 $\chi - 1 + 3(-1) + 3(-2) = 0$
 $\chi = 1 + 3 + 6 = 10$

10. The space curves define by the following vector-valued functions $\vec{r}(t) = (t, \sin(t), t^4)$ and $\vec{s}(t) = (t^3, t, \sin(t))$ intersect at the point $\vec{r}(0) = (0, 0, 0) = \vec{s}(0)$. Then the angle (in radians) between the two curves at the point (0, 0, 0) is:

a) 0 b)
$$\pi/6$$
 c) $\pi/4$ d) $\pi/3$ e) $\pi/2$ f) $2\pi/3$
 $f'(+) = \langle 1, Gsf, 4+3 \rangle$ $f'(s) = \langle 1, 1, 0 \rangle$
 $\hat{S}'(+) = \langle 3+2 \rangle$, $f'(s) = \langle 3+2 \rangle$, $f'(s) = \langle 0, 1, 1 \rangle$
 $\hat{S}'(s) \cdot \hat{F}'(s) = I = \sqrt{2}\sqrt{2} \cdot \frac{1}{2} \cdot \frac{$

11. Answer whether the following is true or false, and give a **reason / counterexample**: The vector $(\vec{j} \times (\vec{k} \times \vec{i})) \times \vec{i}$ is a unit vector, i.e., has length one.

- 12. Answer whether the following is true or false, and give a **reason** / coupterexample:
- (a) If $\vec{v} \perp \vec{w}$, then $3\vec{v} + 2\vec{w}$ and $-3\vec{v} + 2\vec{w}$ have the same length.
- (b) If $3\vec{v} + 2\vec{w}$ and $-3\vec{v} + 2\vec{w}$ have the same length, then $\vec{v} \perp \vec{w}$. Thus,

$$\begin{split} |3\vec{y}+2\vec{x}|^2 &= (3\vec{y}+2\vec{w})\cdot(3\vec{y}+2\vec{w}) \\ &= 9\vec{y}\cdot\vec{y}+(6\vec{y}\cdot\vec{w}+6\vec{w}\cdot\vec{y}+4\vec{w}\cdot\vec{w}) \\ &= 9|\vec{y}|^2+|2\vec{y}\cdot\vec{y}+4|\vec{w}|^2 \\ |-3\vec{y}+2\vec{w}|^2 &= 9|\vec{y}|^2-|2\vec{y}\cdot\vec{w}+4|\vec{w}|^2 \\ &= 3\vec{y}+2\vec{w}|^2 &= 9|\vec{y}|^2-|2\vec{y}\cdot\vec{w}+4|\vec{w}|^2 \\ \text{a) If } \vec{y}\perp\vec{w}, \text{ then } \vec{y}\cdot\vec{w}, \text{ so both lefts are } 9|\vec{y}|^2+\frac{1}{2}\sqrt{\vec{w}}^2 \\ \text{b) If lengths are equal, } |2\vec{y}\cdot\vec{w}=-|2\vec{y}\cdot\vec{w}| \\ \text{So } \vec{y}\cdot\vec{w}=0, \text{ hence } \vec{y}\perp\vec{w} \end{split}$$