| 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

Do not write above this line!

YOUR NAME (print):
MATH 114 - 001/002

## Midterm \# 2

November 13, 2012

Your Section/Instructor's Name (circle one): 001/Pop 002/Cooper
Your TA (first name):

## Rules:

- A single $8 \frac{1}{2}$ by 11 inch handwritten page (one sided) is permitted.
- No other written or printed materials or electronic devices are allowed.


## Grading:

- There are 8 problems (with suggested answers) and 4 questions each worth 10 points.
- Do all problems, showing your work, and circling your answers.
- This is not a multiple choice exam! No credit will be given if you circle the right answer, but do not show the work leading to the answer.


## Instructions:

- Be prepared to show your Penn ID if asked to do so.
- Write you name at the top of each page of the exam.
- Do not detach any of the pages of the exam.


## Academic Integrity Statement:

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this Math 114 Midterm Exam.

Name (printed): $\qquad$ Signature:

1. Let $L$ be the line tangent to the ellipse $2 x^{2}+y^{2}=3$ at the point $(1,1)$. Then the point on $L$ which is closest to $(2,4)$ is:
(a) $(0,3)$
(b) $(-1,2)$
(c) $(-1,0)$
(d) $(0,0)$
(e) $(-1,-1)$
(f) $(1,1)$

$$
\begin{aligned}
\operatorname{det} f(x, y) & =2 x^{2}+y^{2} \cdot \quad \nabla f=\left.\langle 4 x, 2 y\rangle \quad \nabla f\right|_{1,1}=\langle 4,2\rangle \\
L: 4(x-1)+2(y-1)=0 \quad y & =-2 x+3 \\
d^{2}(x, y) & =(x-2)^{2}+(-2 x+3-4)^{2} \\
& =x^{2}-4 x+4+4 x^{2}+4 x+1=5 x^{2}+5
\end{aligned}
$$

Smallest when $x=0$ :
2. Let $f(x, y)=x^{2} \sin (2 y)$, and let $\mathcal{P}$ be the plane tangent to the curve $z=f(x, y)$ at the point defined by $(x, y)=\left(1, \frac{\pi}{4}\right)$. Which of the following planes is parallel to $\mathcal{P}$ ?
(a) $-2 x-y=1$
(b) $x+y+2 z=1$
(c) $2 x+z=1$
(d) $-x+2 y=1$
(e) $2 x+y+z=1$
(f) $-2 x+y+z=1$

$$
\begin{aligned}
& \nabla f=\left\langle 2 x \sin 2 y, 2 x^{2} \cos 2 y\right\rangle \\
& \left.\nabla f\right|_{1, \pi / 4}=\left\langle 2 \sin \frac{\pi}{2}, 2 \cos \pi / 2\right\rangle=\langle 2,0\rangle \\
& P: 2(x-1)+0\left(y-\frac{\pi}{4}\right)-\left(z-f\left(1, \frac{\pi}{4}\right)\right)=0 \\
& \text { normal : }\langle 2,0,-1\rangle
\end{aligned}
$$

3. Let $\ell(x, y)=x \ln \left(y^{2}+\frac{3}{4}\right)$. Then $\ell(x, y)$ achieves a local maximum at. (a)
(e) $(2,1)$

$$
\nabla l=\left\langle\ln \left(y^{2}+\frac{3}{4}\right), \frac{2 x y}{y^{2}+\frac{3}{4}}\right\rangle
$$

$$
\begin{gathered}
\ln \left(y^{2}+\frac{3}{4}\right)=0 \\
y^{2}+\frac{3}{4}=1 \\
y=\frac{1}{z}, \\
x=0 .
\end{gathered}
$$

cp:
$\begin{aligned}=\left(\begin{array}{ll}0 & \frac{24}{y^{4}+} \\ \frac{2 y}{y^{2}+\frac{3}{4}} & \frac{2 y^{2}-3 / 4}{y^{2}+3 / 4}\end{array}\right) \quad & D=\frac{-4 y^{2}}{\left(y^{2}+\frac{3}{4}\right)^{2}}<0 \text { when } y=\frac{1}{2} \\ & \text { So }\left(0, \frac{1}{2}\right) \text { is a saddle port. }\end{aligned}$
4. One of the tangent planes to the surface $x^{2}+2 x y+y^{2}+2 x-z+2=0$ which contains the $x$-axis is:
$\begin{array}{llll}\text { (a) } y+z=0 & \text { (b) } 2 y+z=0 & \text { (c) } x+z=0 & \text { (d) } z=1\end{array}$ (e) $x+2 y=0 \quad$ (f) $2 y=1$
[Hint: Which planes $a x+b y+c z=d$ contain the $x$-axis?...]
$x$-axis: $\{(x, 0,0)\}$ So $a), b)$ contain the x-axis

$$
\begin{aligned}
& f(x, y, z)=x^{2}+2 x y+y^{2}+2 x-z+2 \\
& \nabla f=\langle 2 x+2 y+2,2 x+2 y,-1\rangle
\end{aligned}
$$

Must have $2 x+2 y+2=0$, so $2 x+2 y=-2$, so $\langle 0,-2,-1\rangle$ is normal to the tagger plane when the tangent plane contains the x-axis.

$$
2 y+z=c
$$

5. The distance from the point $(0,1,2)$ to thrace $x^{2}+y^{2}-4 z=0$ is:

$$
\begin{aligned}
& d^{(2)}(x, y, z)=x^{(1)}+(y-1)^{2}+(z-2)^{(1)} \quad g(x, y)=x^{(2)}+y^{2}-y z \\
& \nabla_{d}{ }^{2}=\langle 2 x, 2(y-1), 2(z-2)\rangle \\
& \nabla \mathrm{V}=\langle 2 x, 2 y,-21\rangle \\
& \nabla d^{2}=\lambda \nabla g \\
& 2 x=\lambda 2 x \\
& \text { If } x \neq 0, \lambda=1 \text {. So } 2(y-1)=2 y \text { nosolin. } \\
& 2(y-1)=2 \lambda y \quad \text { So } x=0 \text {. } \\
& 2 z-4=-4 \lambda \quad \text { If } y=0,-2=0 \rightarrow<\text { so } y \neq 0 \text {, so } \\
& \lambda=1-\frac{1}{y}=1-\frac{z}{2} \quad \frac{1}{y}=\frac{z}{2} \quad y=\frac{2}{z} \\
& \left(\frac{2}{z^{2}}\right)^{2}-4 z=0 \quad \frac{4}{z^{2}}=4 z \quad 1=z^{3} \quad z=1, y=2, x^{-0} \\
& d^{2}(0,2,1)=0+1+1=2
\end{aligned}
$$

6. The sum of the absolute maximum and the absolute minimum of the function $g(x, y)=x^{2}+2 x y^{2}-2 x$ on the region $\left\{(x, y)-x^{2}-y^{2} \leq 3\right\}$ is:
$\begin{array}{ll}\text { (a) } 1-\sqrt{3} & \text { (b) } 1+\sqrt{3}\end{array}$

$$
\nabla_{y}=\left\langle 2 x+2 y^{2}-2,4 x y\right\rangle
$$

$\nabla_{y}=0$ when $2 x+2 y^{2}-2=0$

$$
4 x y=0
$$

If $x=0,2 y^{2}=2 \quad y= \pm 1$
If $y=0,2 x=2 \quad x=1$.
c.p, $(0,1),(0,-1),(1,0)$
all interior.

$$
\begin{aligned}
& g(0,1)=g(0,-1)=0 \\
& g(1,0)=-1
\end{aligned}
$$

For boundary, see next page
bander: $h(x, y)=x^{2}+y^{2}-2=0$

$$
g\left(\frac{1-\sqrt{3}}{6}\right)>2 \cdot-\frac{1}{2}=-1
$$

So absolute max is $2+2 \sqrt{2}$, absolute min is -1

$$
2+2 \sqrt{2}-1=1+2 \sqrt{2}=1+\sqrt{8}
$$

$$
\begin{aligned}
& \nabla_{g}=\lambda \nabla h \\
& g( \pm \sqrt{2}, 0) \\
& 2 x+2 y^{2}-2=2 \lambda x \\
& =2 \pm 2 \sqrt{2} \\
& \approx 4.8 \text {, } \\
& 4 x y=2 \lambda y \\
& -.8 \\
& y=0 \Rightarrow x^{2}=2 \Rightarrow x= \pm \sqrt{2} \\
& y * 0 \Rightarrow 2 x=\lambda \\
& 0<\frac{1+\sqrt{13}}{6}<\frac{5}{6} \text {, So } \\
& g(x)=x^{2}+2 x\left(2-x^{2}\right)+2 x \\
& x+y^{2}-2=2 x^{2} \\
& =-2 x^{3}+x^{2}+2 x \\
& x+\left(2-x^{2}\right)-2=2 x^{2} \\
& 3 x^{2}-x-1=0 \\
& \text { has } g\left(\frac{1+\sqrt{13}}{6}\right)<\left(\frac{5}{6}\right)^{2}+2.5 / 6 \\
& <3<4.8 \\
& x=\frac{1 \pm \sqrt{13}}{6} \\
& \left.g\left(\frac{1+\sqrt{13}}{6}\right)>0 \text { since when }|x| 2\right) \text {, } \\
& \left|x^{3}\right|<\left|x^{2}\right|<|x| \text {. } \\
& -\frac{3}{6}<\frac{1-\sqrt{13}}{6}<0 \\
& g\left(\frac{1-\sqrt{13}}{6}\right)<2 \cdot\left(\frac{1}{2}\right)^{3}+\left(\frac{1}{2}\right)^{2}=\frac{2}{8}+\frac{1}{4}=\frac{1}{2}<1
\end{aligned}
$$

7. The temperature of a metal plate in the $x y$-coordinates is given by $T(x, y)=x \sin (2 y)$. Suppose the probe is moving along the circle of radius 1 centered at the origin, according to $x=\cos (2 t), y=\sin (2 t)$. How fast is the temperature probe's reading changing when it reaches the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ ?
a) $\cos (\sqrt{3})$ b) $\sin \left(2 \sqrt{8}\right.$ c) $\cos (\sqrt{3})-\sqrt{3} \sin (\sqrt{3})$ d) 0 e) $\frac{1}{2} \sin (\sqrt{3})$ f) $\cos (2)+\frac{1}{2} \cos \left(\frac{\sqrt{3}}{2}\right)$

$$
\begin{aligned}
& \frac{d}{d t}(T(x(t), y(t)))=\nabla T \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle \\
& \quad=\langle\sin 2 y, 2 x \cos 2 y\rangle \cdot\langle-2 \sin 2 t, 2 \cos 2 t\rangle \\
& \quad=\langle\sin 2 y, 2 x \cos 2 y\rangle \cdot\langle-2 y, 2 x\rangle \\
& \quad=-2 y \sin 2 y+4 x^{2} \cos 2 y \text { when } x=\frac{1}{2} \quad y=\frac{\sqrt{3}}{2}, \\
& \frac{d}{d t}(T(x(t), y(t)))=-\sqrt{3} \sin \sqrt{3}+\cos \sqrt{3}
\end{aligned}
$$

8. Consider all the rectangular boxes of sides $a, b, c$ satisfying $a^{2}+4 b^{2}+9 c^{2} \leq 108$. The maximal possible volume of such boxes is:
(a) 25
(b) 27
(c) $\quad 29$
(d) 33

(f) 39

$$
V=a b c \quad \nabla V=\langle b c, a c, a b\rangle=0
$$

when $b c=0, a c=0, \quad a b=0$
$\Rightarrow$ atleost one of $a b, c=0$. So interiar local extreme. value is $O$, probably nt a maximum. Check bindery:

$$
\begin{array}{ccc}
\langle b c, a c, a b\rangle=\lambda\langle 2 a, 8 b, 18 c\rangle \\
b c=2 \lambda a & a c=8 \lambda b & \text { So } \\
a c=8 a^{2}=108 \\
a c=8 \lambda b & a b=18 \lambda c & a^{2}=36 \\
\frac{b}{a}=\frac{1}{4} \frac{9}{b} & \frac{c}{b}=\frac{8}{18} b & a \\
4 b^{2}=a^{2} & 9 c^{2}=4 b^{2} & b=3 \\
4 & c=2
\end{array}
$$

9. The altitude of a hill is described by the function $f(x, y)=\frac{1}{2} x^{2} y-\pi x \cos (y)$, where $x$ is how far east the point is and y is how far north the point is. Is it true that a ball released from rest at the point on the hill corresponding to $(1, \pi)$ will start rolling due north?

- Justify your answer!

Ball rolls downhill, ie e $m$ the dreetion $-\nabla f$.

$$
-\left.\nabla f\right|_{1, \pi}=-\left.\left\langle x y-\pi \cos y, \frac{1}{2} x^{2}+\pi x \sin y\right\rangle\right|_{1, \pi}
$$

$$
=-\left\langle\pi-\pi(-1), \frac{1}{2}+0\right\rangle=\left\langle-2 \pi,-\frac{1}{2}\right\rangle
$$

Not due north! (west-southwest)
10. Let a function $h(x, y)$ have a saddle point at $\left(x_{0}, y_{0}\right)$. Is it true that the Hessian determinant $h_{x x}\left(x_{0}, y_{0}\right) h_{y y}\left(x_{0}, y_{0}\right)-h_{x y}\left(x_{0}, y_{0}\right)^{2}$ of $h(x, y)$ at $\left(x_{0}, y_{0}\right)$ must be negative?

- Justify your answer!

$$
\begin{aligned}
\text { No. E.g. } & h_{1}(x, y)=x^{4}-y^{4} \text { or } \\
& h_{2}(x, y)=|x|-|y| \text { at }(x, y)=(0,0) .
\end{aligned}
$$

( $h_{2}$ is not diff'ble, and

$$
\left(h_{1}\right)_{x x}=12 x^{2} \quad\left(h_{1}\right)_{y y}=-12 y^{2}
$$

$$
\left.\left(h_{1}\right)_{x y}=0 \text { So at }(0,0), \text { Hess. dat. }=0 .\right)
$$

11. Find out whether the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}+y^{2}\right) \sin (x y)}{x^{4}+y^{4}}
$$

exits, and if the limit exists, compute the limit.
Approach along positive $x$-axis:

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin (0)}{x^{4}}=0
$$

$A_{p g r a n c h ~ a l o g ~} y=x$ from $1^{5^{2}}$ quadrat:

$$
\lim _{x \rightarrow 0^{+}} \frac{2 x^{2} \sin \left(x^{2}\right)}{2 x^{4}}=\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}=1
$$

Limit does nat exist.
12. Is it true that the point $(1,1)$ is a local maximum of the function

$$
f(x, y)=e^{\sin ^{2}(x y)}+\ln \left(1+x^{4}+y^{4}\right)
$$

in the region $-1 \leq x, y \leq 1$, but inspite of that one has that $f_{x}(a, b) \neq 0$ ?


$$
\begin{aligned}
& \text { Yes. Justify your answer: } \\
& \nabla f=\left\langle 2 y \sin (x y) \cos (x y) e^{\sin ^{2}(x y)}+\frac{4 x^{3}}{\left.1+x^{4}+y^{4}\right)}\right. \\
& 2 x \sin (x y) \cos (x y) e^{\sin ^{2}(x) y}+\frac{4 y^{3}}{\left.1+x^{4}+y^{4}\right\rangle}
\end{aligned}
$$

At $(x, y)=(1,1)$, of points in the Same dir. as $\langle 1,1\rangle$, so $f_{x}>0$ and $f_{y}>0$ near $(1,1)$. Since awry
point $(x, y)$ in the square has $x \leq 1, y \leq 1$, this
means $f(1,1) \geqslant f(x, y)$. for $(x, y)$ nee $(1,1)$.

