MTH 114 Exam 2 Practice

1. Consider the iterated integral $\int_1^e \int_0^{\ln x} y dy dx$. (a) Sketch the region of integration.

(b) Rewrite the integral, reversing the order of integration.

(c) Evaluate the integral.

- 2. Suppose the temperature of a metal plate is given by $T(x, y) = x \sin(2y)$, where x and y are cartesian coordinates for the plate.
 - (a) Suppose the probe is moving along the circle of radius 1, centred at the origin, according to $x = \cos 2t, y = \sin 2t$. How fast is the temperature probe's reading changing when it reaches the point $(\frac{1}{2}, \frac{\sqrt{3}}{2})$?

A.
$$\sqrt{2}$$
 B. $\sqrt{3}$ C. $\sqrt{2}\cos\sqrt{3}$
D. $-\sqrt{3}\sin\sqrt{3} + \cos\sqrt{3}$ E. $\frac{\pi}{6}$ F. $\frac{1}{2}\sin\sqrt{3}$

(b) Starting from (-1, -1), in what direction should the temperature probe be moved to give the greatest increase in temperature?

3. Let $f(x, y) = \sin(x^2 - y^2)$. Which of the following planes is parallel to the tangent plane to the graph z = f(x, y) when x = 1 and y = 1?

A. 3x + 4(y - 1) + z = 0 B. -2(x + 7) + 2y + z = 5 C. z = 1D. x + y + z = 0 E. -3x + 4y - z = 0 F. 2x - 2y = 9 4. Find the absolute maximum and absolute minimum of the function $g(x, y) = x^2 - y^2$ on the region $R = \{(x, y) | x^2 + 4y^2 \le 1\}.$

A. $\max_R g = 1, g$ has no minimum B. $\max_R g = 1, \min_R g = -\frac{1}{4}$ C. $\max_R g = 4, \min_R g = 0$ D. $\max_R g = 0, \min_R g = -\frac{1}{4}$ E. g has neither maximum nor minimum on R F. $\max_R g = 1, \min_R g = -1$

5.
$$\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} e^{x^2+y^2} dx dy =$$

A. 1 B. e^{π} C. 0

D.
$$\frac{1}{2}e^4$$
 E. $\sqrt{\pi}$ F. $\frac{\pi}{2}(e^4 - 1)$

- 6. TRUE or FALSE. For each of the following statements, indicate whether it is always true (T) or sometimes false (F). Support your answers.
 - (a) Suppose h(x, y) is a function of two variables so that $h_{xx}(x, y)h_{yy}(x, y) h_{xy}(x, y)h_{yx}(x, y) \le 0$ for all x, y in the domain of h. Then h cannot have any local maxima.

(b) There is a point on the hyperbola xy = 1 for which $g(x, y) = y + \frac{1}{x}$ is minimal.

(c) The maximum value of θ which occurs in the region bounded by y = x and $y = x^2$ is $\frac{\pi}{4}$.

(d) Let $f(r,\theta)$ be a function defined in polar coordinates, which has a local maximum at (r_0,θ_0) with $r_0 > 0$. Suppose $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ exist at (r_0,θ_0) . Then $\frac{\partial f}{\partial r}|_{(r_0,\theta_0)} = 0$.