MTH 114 Exam 2 Practice

1. Consider the iterated integral $\int_{1}^{e} \int_{0}^{\ln x} y d y d x$.
(a) Sketch the region of integration.
(b) Rewrite the integral, reversing the order of integration.
(c) Evaluate the integral.
2. Suppose the temperature of a metal plate is given by $T(x, y)=x \sin (2 y)$, where x and y are cartesian coordinates for the plate.
(a) Suppose the probe is moving along the circle of radius 1 , centred at the origin, according to $x=\cos 2 t, y=\sin 2 t$. How fast is the temperature probe's reading changing when it reaches the point $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$?
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{2} \cos \sqrt{3}$
D. $-\sqrt{3} \sin \sqrt{3}+\cos \sqrt{3}$
E. $\frac{\pi}{6} \quad$ F. $\frac{1}{2} \sin \sqrt{3}$
(b) Starting from $(-1,-1)$, in what direction should the temperature probe be moved to give the greatest increase in temperature?
A. $\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$
B. $\left\langle-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right\rangle$
C. $\left\langle\frac{\sin (-2)}{\sqrt{1+3 \cos ^{2}(-2)}}, \frac{-2 \cos (-2)}{\sqrt{1+3 \cos ^{2}(-2)}}\right\rangle$
D. $\langle 1,0\rangle$
E. $\langle 0,-1\rangle$
F. $\left\langle\frac{1}{2}, \frac{\sqrt{3}}{2}\right\rangle$
3. Let $f(x, y)=\sin \left(x^{2}-y^{2}\right)$. Which of the following planes is parallel to the tangent plane to the graph $z=f(x, y)$ when $x=1$ and $y=1$?
A. $3 x+4(y-1)+z=0$
B. $-2(x+7)+2 y+z=5$
C. $z=1$
D. $x+y+z=0$
E. $-3 x+4 y-z=0$
F. $2 x-2 y=9$
4. Find the absolute maximum and absolute minimum of the function $g(x, y)=x^{2}-y^{2}$ on the region $R=\left\{(x, y) \mid x^{2}+4 y^{2} \leq 1\right\}$.
A. $\max _{R} g=1, g$ has no minimum
B. $\max _{R} g=1, \min _{R} g=-\frac{1}{4}$
C. $\max _{R} g=4, \min _{R} g=0$
D. $\max _{R} g=0, \min _{R} g=-\frac{1}{4}$
E. g has neither maximum nor minimum on R

$$
\text { F. } \max _{R} g=1, \min _{R} g=-1
$$

5. $\int_{0}^{2} \int_{-\sqrt{4-y^{2}}}^{\sqrt{4-y^{2}}} e^{x^{2}+y^{2}} d x d y=$
A. 1
B. e^{π}
C. 0
$\begin{array}{lll}\text { D. } \frac{1}{2} e^{4} & \text { E. } \sqrt{\pi} & \text { F. } \frac{\pi}{2}\left(e^{4}-1\right)\end{array}$
6. TRUE or FALSE. For each of the following statements, indicate whether it is always true (T) or sometimes false (F). Support your answers.
(a) Suppose $h(x, y)$ is a function of two variables so that $h_{x x}(x, y) h_{y y}(x, y)-h_{x y}(x, y) h_{y x}(x, y) \leq 0$ for all x, y in the domain of h. Then h cannot have any local maxima.
(b) There is a point on the hyperbola $x y=1$ for which $g(x, y)=y+\frac{1}{x}$ is minimal.
(c) The maximum value of θ which occurs in the region bounded by $y=x$ and $y=x^{2}$ is $\frac{\pi}{4}$.
(d) Let $f(r, \theta)$ be a function defined in polar coordinates, which has a local maximum at $\left(r_{0}, \theta_{0}\right)$ with $r_{0}>0$. Suppose $\frac{\partial f}{\partial r}$ and $\frac{\partial f}{\partial \theta}$ exist at $\left(r_{0}, \theta_{0}\right)$. Then $\left.\frac{\partial f}{\partial r}\right|_{\left(r_{0}, \theta_{0}\right)}=0$.
