1. A coil is to be drilled out of a block of metal whose density is described by $\delta(x, y, z) = 12\sqrt{z}$. The coil to be drilled out is described by $\mathbf{r}(t) = \langle \cos t, \sin t, t^2 \rangle$, $0 \le t \le 2\pi$. What is the mass of the coil?

A. 0 B.
$$512\pi^3$$
 C. $(1+8\pi)^{\frac{3}{2}}-1$
D. 2π E. $4\pi^2$ F. $\sqrt{1+2\pi}$

2. Let $f(x, y) = x \ln(y^2 + \frac{3}{4})$. Where does f(x, y) achieve local maxima?

A.
$$(0, \frac{1}{2})$$
 B. $(0, 1)$ C. $(0, 0)$

- D. (1,1) E. There are no local maxima. F. $(\frac{1}{2},1)$
- 3. The plane 4x + 8(y-1) 2z = -6 and the plane 2(x-3) + y z = 0 intersect in a line. This line intersects the plane x + y + z = 0 when z =
 - A. $\frac{1}{12}$ B. 3 C. $-\frac{7}{2}$ D. 0 E. 1 F. $-\frac{13}{9}$
- 4. The torsion of a particle moving according to $(t^2 + t, t^2, t), t \ge 0$, is:

A.
$$\sqrt{2t^2 + 2t^4 + 2t^3}$$
 B. $\sqrt{t^2 + t}$ C. 0
D. $\sqrt{t^2 - t}$ E. $(2t^2 + 2t^4)^{-\frac{3}{2}}$ F. 1

5. Assuming uniform density $\delta = 1$, the moment of the region bounded above by the sphere $x^2 + y^2 + z^2 = 2$ and below by the paraboloid $z = x^2 + y^2$ about the *xy*-plane is:

A. 1 B.
$$2\pi$$
 C. 0
D. $\frac{5\pi}{12}$ E. $2\pi \left(\frac{1}{3}2^{\frac{3}{2}} - \frac{7}{12}\right)$ F. $\frac{\pi}{4}$

6. Which of the following planes is perpendicular to the plane which is tangent to the graph of $g(x, y) = x^2 \cos(y)$ when $(x, y) = (1, \frac{\pi}{4})$?

A.
$$4 = \sqrt{2}x + 3y + z$$
 B. $2 = x + y + \sqrt{2}z$ C. $4 = \sqrt{2}x + 3y + \sqrt{2}z$
D. $1 = \sqrt{2}x + \sqrt{2}y + z$ E. $0 = x + y + z$ F. $1 = 2x - 2y - z$

7. Integrate:

$$\int_0^2 \int_x^2 2y^2 \sin(xy) dy dx$$

A. $4 - \sin(4)$ B. 0 C. $-\cos(2)$ D. $\cos(4) - 1$ E. 4 F.1 $-\cos(2)$

8. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.

i The function $g(x,y) = \begin{cases} \frac{x+y}{x-y} & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$ is continuous.

- ii The altitude of a hill is described by the function $f(x, y) = \frac{1}{2}x^2y \pi x\cos(y)$, where x is how far east the point is and y is how far north the point is. A ball released from rest at the point on the hill corresponding to the origin will start rolling due south.
- iii Let $\mathbf{F}(x, y) = 2e^{2x+y}\mathbf{i} + e^{2x+y}\mathbf{j}$. The line integral of \mathbf{F} along any closed loop is positive.
- iv The surface $\rho = \sin \phi$ is a sphere.
- v The surface $\rho = \cos \phi$ is a sphere.
- vi The graph of a solution of the differential equation $\frac{dy}{dt} = (y-1)(y+2)$ is a parabola.
- 9. Find the volume of the region which lies inside the sphere $x^2 + y^2 + z^2 = 9$ and outside the cylinder $x^2 + y^2 = 4$.
- 10. Solve the initial value problem:

$$\frac{d^2 \mathbf{r}}{dt^2} = -t^2 \mathbf{i} + \mathbf{j} - t \mathbf{k}$$
$$\frac{d \mathbf{r}}{dt}(1) = \frac{2}{3} \mathbf{i} - \frac{1}{2} \mathbf{k}$$
$$\mathbf{r}(0) = \mathbf{i} - \mathbf{j}$$

1. C
2. E
3. F
4. C
5. D
6. D
7. A
8. i F
іі Т
iii F
iv F
v T
vi F
9. $2\pi\sqrt{5}$
10. $\mathbf{r}(t) = (-\frac{1}{12}t^4 + t + 1)\mathbf{i} + (\frac{1}{2}t^2 - t - 1)\mathbf{j} - \frac{1}{6}t^3\mathbf{k}$