1. A coil is to be drilled out of a block of metal whose density is described by $\delta(x, y, z)=12 \sqrt{z}$. The coil to be drilled out is described by $\mathbf{r}(t)=\left\langle\cos t, \sin t, t^{2}\right\rangle, 0 \leq t \leq 2 \pi$. What is the mass of the coil?
A. 0
B. $512 \pi^{3}$
C. $(1+8 \pi)^{\frac{3}{2}}-1$
D. 2π
E. $4 \pi^{2}$
F. $\sqrt{1+2 \pi}$
2. Let $f(x, y)=x \ln \left(y^{2}+\frac{3}{4}\right)$. Where does $f(x, y)$ achieve local maxima?
A. $\left(0, \frac{1}{2}\right)$
B. $(0,1)$
C. $(0,0)$
D. $(1,1)$
E. There are no local maxima.
F. $\left(\frac{1}{2}, 1\right)$
3. The plane $4 x+8(y-1)-2 z=-6$ and the plane $2(x-3)+y-z=0$ intersect in a line. This line intersects the plane $x+y+z=0$ when $z=$
A. $\frac{1}{12}$
B. 3
C. $-\frac{7}{2}$
D. 0
E. 1 F. $-\frac{13}{9}$
4. The torsion of a particle moving according to $\left(t^{2}+t, t^{2}, t\right), t \geq 0$, is:
A. $\sqrt{2 t^{2}+2 t^{4}+2 t^{3}}$
B. $\sqrt{t^{2}+t}$
C. 0
D. $\sqrt{t^{2}-t}$
E. $\left(2 t^{2}+2 t^{4}\right)^{-\frac{3}{2}}$
F. 1
5. Assuming uniform density $\delta=1$, the moment of the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the paraboloid $z=x^{2}+y^{2}$ about the $x y$-plane is:
A. 1
B. 2π
C. 0

$$
\begin{array}{lll}
\text { D. } \frac{5 \pi}{12} & \text { E. } 2 \pi\left(\frac{1}{3} 2^{\frac{3}{2}}-\frac{7}{12}\right) & \text { F. } \frac{\pi}{4}
\end{array}
$$

6. Which of the following planes is perpendicular to the plane which is tangent to the graph of $g(x, y)=$ $x^{2} \cos (y)$ when $(x, y)=\left(1, \frac{\pi}{4}\right)$?
A. $4=\sqrt{2} x+3 y+z$
B. $2=x+y+\sqrt{2} z$
C. $4=\sqrt{2} x+3 y+\sqrt{2} z$
D. $1=\sqrt{2} x+\sqrt{2} y+z$
E. $0=x+y+z$
F. $1=2 x-2 y-z$
7. Integrate:

$$
\int_{0}^{2} \int_{x}^{2} 2 y^{2} \sin (x y) d y d x
$$

A. $4-\sin (4)$
B. 0
C. $-\cos (2)$
D. $\cos (4)-1$
E. $4 \quad$ F. $1-\cos (2)$
8. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.
i The function $g(x, y)=\left\{\begin{array}{ll}\frac{x+y}{x-y} & \text { if } x \neq y \\ 0 & \text { if } x=y\end{array}\right.$ is continuous.
ii The altitude of a hill is described by the function $f(x, y)=\frac{1}{2} x^{2} y-\pi x \cos (y)$, where x is how far east the point is and y is how far north the point is. A ball released from rest at the point on the hill corresponding to the origin will start rolling due south.
iii Let $\mathbf{F}(x, y)=2 e^{2 x+y} \mathbf{i}+e^{2 x+y} \mathbf{j}$. The line integral of \mathbf{F} along any closed loop is positive.
iv The surface $\rho=\sin \phi$ is a sphere.
v The surface $\rho=\cos \phi$ is a sphere.
vi The graph of a solution of the differential equation $\frac{d y}{d t}=(y-1)(y+2)$ is a parabola.
9. Find the volume of the region which lies inside the sphere $x^{2}+y^{2}+z^{2}=9$ and outside the cylinder $x^{2}+y^{2}=4$.
10. Solve the initial value problem:

$$
\begin{aligned}
\frac{d^{2} \mathbf{r}}{d t^{2}} & =-t^{2} \mathbf{i}+\mathbf{j}-t \mathbf{k} \\
\frac{d \mathbf{r}}{d t}(1) & =\frac{2}{3} \mathbf{i}-\frac{1}{2} \mathbf{k} \\
\mathbf{r}(0) & =\mathbf{i}-\mathbf{j}
\end{aligned}
$$

1. C
2. E
3. F
4. C
5. D
6. D
7. A
8. i F
ii T
iii F
iv F
v T
vi F
9. $2 \pi \sqrt{5}$
10. $\mathbf{r}(t)=\left(-\frac{1}{12} t^{4}+t+1\right) \mathbf{i}+\left(\frac{1}{2} t^{2}-t-1\right) \mathbf{j}-\frac{1}{6} t^{3} \mathbf{k}$
