MATH 114 Final Exam Practice

1. What is the angle between the curves $y = \sin(x)$ and $x = y^2$ where they intersect?

A. 0 B.
$$\frac{\pi}{6}$$
 C. $\frac{\pi}{4}$ D. $\frac{\pi}{3}$ E. $\frac{\pi}{2}$ F. $\frac{5\pi}{6}$

2. Find the derivative of $g(x, y, z) = y \cos(x^2 + z^2)$ in the direction of the velocity vector of the curve $\mathbf{r}(t) = \langle t^2 + 2t, e^t, \sin t \rangle$ when t = 0, at the point described by $\mathbf{r}(0)$.

A. 1 B. 0 C.
$$\sqrt{6}$$
 D. $\frac{1}{\sqrt{6}}$ E. $\frac{1}{2}$ F. 2

3. The minimum curvature of the ellipse $x^2 + 4y^2 = 4$ is

A.
$$\frac{1}{6}$$
 B. $\frac{1}{5}$ C. $\frac{1}{4}$ D. $\frac{1}{3}$ E. $\frac{1}{2}$ F. 1

- 4. Find $\oint_C 2xdy 3ydx$, where C is the curve composed of a straight line segment from (-1, 0) to (0, 0), a straight line segment from (0, 0) to $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$, and the part of the circle of radius 1, centered at the origin, traversed counterclockwise starting from $\left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$ and ending at (-1, 0).
 - A. π B. $\frac{\pi}{8}$ C. $\frac{7}{8}\pi$ D. $\frac{15}{8}\pi$ E. $\frac{25}{8}\pi$ F. $\frac{35}{8}\pi$

5. Compute
$$\int_0^3 \int_{1-\frac{y}{3}}^1 \sin(x^2) dx dy$$
.
A. $3\sin(1)$ B. 5 C. $5\cos(1)$ D. $\frac{3}{2} - \frac{3}{2}\cos(1)$ E. $3 - 3\sin(1)$ F. $\frac{5}{2}\cos(1)$

6. Find the integral of z over the region inside the first octant and the unit sphere, but outside the surface $\rho = \sin \phi$.

A. 0 B.
$$\frac{\pi}{24}$$
 C. $\frac{\pi}{16}$ D. $\frac{\pi}{12}$ E. $\frac{\pi}{8}$ F. $\frac{\pi}{6}$

7. There is a unique point on the ellipsoid $x^2 + y^2 + 4z^2 = 4$ which is closest to the plane x + y + z = 10, and a unique point on the ellipsoid farthest from the plane. What is the distance between these two points?

A.
$$\frac{2\sqrt{33}}{3}$$
 B. 0 C. $\sqrt{15}$ D. $\sqrt{5}$ E. $\frac{\sqrt{5}}{3}$ F. 1

- 8. Find and classify the critical points of the function $f(x, y) = e^{x^2} y + xy$.
- 9. For which values of x, y is it true that $\langle x, 2x + 1, y \rangle \times \langle -x, y, x \rangle = 0$?

10. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.

i. The function
$$g(x, y) = \begin{cases} \frac{x^2 + y^2}{x + y} & \text{if } x \neq -y \\ 0 & \text{if } x = -y \end{cases}$$
 is continuous.

- ii. The torsion of the curve $\langle 4t, \cos(2t), \sin(2t) \rangle$ is constant.
- iii. The graph of any solution of the differential equation $\frac{dy}{dt} = y + 1$ is a line.
- iv. There is a solution of the differential equation $\frac{dy}{dt} = y^2 + 1$ whose graph is a line.
- v. The work done by the force $\mathbf{F}(x, y) = \langle y^2 e^{xy^2}, 2xy e^{xy^2} + y \rangle$ to move a particle from (0, -1) to (0, 1) along the left half of the unit circle is the the same as the work done by \mathbf{F} to move a particle from (0, -1) to (0, 1) along the right half of the unit circle.
- vi. Suppose \mathbf{u} and \mathbf{v} are unit vectors which are not parallel. Then $\mathbf{u} \times \mathbf{v}$ is a unit vector.

1. E 2. D 3. C 4. F 5. D 6. B 7. A 8. Saddle point at (1, -2e). 9. (x, y) = (-1, 1) or (x, y) = (0, 0). 10. i. F ii. T iii. F iv. F v. T

vi. F