MATH 114 Final Exam Practice

1. What is the angle between the curves $y=\sin (x)$ and $x=y^{2}$ where they intersect?
A. 0
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$
E. $\frac{\pi}{2}$
F. $\frac{5 \pi}{6}$
2. Find the derivative of $g(x, y, z)=y \cos \left(x^{2}+z^{2}\right)$ in the direction of the velocity vector of the curve $\mathbf{r}(t)=\left\langle t^{2}+2 t, e^{t}, \sin t\right\rangle$ when $t=0$, at the point described by $\mathbf{r}(0)$.
A. 1
B. 0
C. $\sqrt{6}$
D. $\frac{1}{\sqrt{6}}$
E. $\frac{1}{2} \quad$ F. 2
3. The minimum curvature of the ellipse $x^{2}+4 y^{2}=4$ is
A. $\frac{1}{6}$
B. $\frac{1}{5}$
C. $\frac{1}{4}$
D. $\frac{1}{3}$
E. $\frac{1}{2}$ F. 1
4. Find $\oint_{C} 2 x d y-3 y d x$, where C is the curve composed of a straight line segment from $(-1,0)$ to $(0,0)$, a straight line segment from $(0,0)$ to $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$, and the part of the circle of radius 1 , centered at the origin, traversed counterclockwise starting from $\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ and ending at $(-1,0)$.
A. π
B. $\frac{\pi}{8}$
C. $\frac{7}{8} \pi$
D. $\frac{15}{8} \pi$
E. $\frac{25}{8} \pi$
F. $\frac{35}{8} \pi$
5. Compute $\int_{0}^{3} \int_{1-\frac{y}{3}}^{1} \sin \left(x^{2}\right) d x d y$.
A. $3 \sin (1)$
B. 5
C. $5 \cos (1)$
D. $\frac{3}{2}-\frac{3}{2} \cos (1)$
E. $3-3 \sin (1) \quad$ F. $\frac{5}{2} \cos (1)$
6. Find the integral of z over the region inside the first octant and the unit sphere, but outside the surface $\rho=\sin \phi$.
A. 0
B. $\frac{\pi}{24}$
C. $\frac{\pi}{16}$
D. $\frac{\pi}{12}$
E. $\frac{\pi}{8}$
F. $\frac{\pi}{6}$
7. There is a unique point on the ellipsoid $x^{2}+y^{2}+4 z^{2}=4$ which is closest to the plane $x+y+z=10$, and a unique point on the ellipsoid farthest from the plane. What is the distance between these two points?
A. $\frac{2 \sqrt{33}}{3}$
B. 0
C. $\sqrt{15}$
D. $\sqrt{5}$
E. $\frac{\sqrt{5}}{3} \quad$ F. 1
8. Find and classify the critical points of the function $f(x, y)=e^{x^{2}}-y+x y$.
9. For which values of x, y is it true that $\langle x, 2 x+1, y\rangle \times\langle-x, y, x\rangle=\mathbf{0}$?
10. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.
i. The function $g(x, y)=\left\{\begin{array}{ll}\frac{x^{2}+y^{2}}{x+y} & \text { if } x \neq-y \\ 0 & \text { if } x=-y\end{array}\right.$ is continuous.
ii. The torsion of the curve $\langle 4 t, \cos (2 t), \sin (2 t)\rangle$ is constant.
iii. The graph of any solution of the differential equation $\frac{d y}{d t}=y+1$ is a line.
iv. There is a solution of the differential equation $\frac{d y}{d t}=y^{2}+1$ whose graph is a line.
v. The work done by the force $\mathbf{F}(x, y)=\left\langle y^{2} e^{x y^{2}}, 2 x y e^{x y^{2}}+y\right\rangle$ to move a particle from $(0,-1)$ to $(0,1)$ along the left half of the unit circle is the the same as the work done by \mathbf{F} to move a particle from $(0,-1)$ to $(0,1)$ along the right half of the unit circle.
vi. Suppose \mathbf{u} and \mathbf{v} are unit vectors which are not parallel. Then $\mathbf{u} \times \mathbf{v}$ is a unit vector.
11. E
12. D
13. C
14. F
15. D
16. B
17. A
18. Saddle point at $(1,-2 e)$.
19. $(x, y)=(-1,1)$ or $(x, y)=(0,0)$.
20. i. F
ii. T
iii. F
iv. F
v. T
vi. F
