1. What is the angle between the curves $y=\cos (x-1)-1$ and $x=e^{y}$ where they intersect?
A. 0
B. $\frac{\pi}{6}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{3}$
E. $\frac{\pi}{2} \quad$ F. $\frac{5 \pi}{6}$
2. Find the moment of inertia about the z-axis of the portion of the first octant inside the surface $\rho=2 \sin \phi$, if density is given by $\delta(x, y, z)=z$.
A. 0
B. $\frac{\pi}{5}$
C. $\frac{3 \pi}{5}$
D. $\frac{6 \pi}{5}$
E. $\frac{8 \pi}{5}$
F. $\frac{11 \pi}{5}$
3. Suppose $\frac{d y}{d t}=k(y+7), y(0)=0$, and $y(1)=1$. What is $y(2)$? Here k is a constant.
A. $\frac{15}{7}$
B. $\frac{13}{7}$
C. $\frac{11}{7}$
D. $\frac{9}{7}$
$\begin{array}{ll}\text { E. } 1 & \text { F. } \frac{5}{7}\end{array}$
4. What is the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left(3 x^{2}+y^{2}\right)\left(1-\cos \left(x^{2}+y^{2}\right)\right)}{x^{6}+y^{6}}
$$

A. $\frac{3}{2}$
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. $\frac{9}{2}$
E. $\frac{11}{2}$
F. limit does not exist
5. The maximal volume of any rectangular prism whose sides a, b, c satisfy $4 a b+9 a c+b c \leq 108$ is:
A. 36
B. $\frac{71}{2}$
C. 35
D. 34
E. 33 F. $\frac{65}{2}$
6. Consider a parallelogram \mathcal{P}, three of whose vertices are $A=(1,2,1), B=(0,1,1), C=(-1,0,0)$.
i. Find the area of \mathcal{P}.
ii. \mathcal{P} lies in a plane. Give an equation for that plane.
iii. If we project \mathcal{P} to the $y z$ plane, we get a parallelogram in the $y z$ plane. What is the area of that parallelogram?
7. Suppose R is the parallelipiped spanned by $\mathbf{u}=\langle a, 0,0\rangle, \mathbf{v}=\left\langle b_{1}, b_{2}, 0\right\rangle, \mathbf{w}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$.
i. Give a formula for the surface area A in terms of $a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}$.
ii. Give a formula for the volume V in terms of $a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}$.
iii. If we wanted to find the parallelipiped with maximal volume among all such parallelipipeds with the same surface area A_{0}, write (but don't solve) the Lagrange multipliers system in the variables $a, b_{1}, b_{2}, c_{1}, c_{2}, c_{3}$ that we'd need to solve.
iv. By examining the equations in the Lagrange multipliers system, show that $\mathbf{u}, \mathbf{v}, \mathbf{w}$ must be mutually orthogonal to maximise volume. (Hint. Consider $\frac{\partial}{\partial b_{1}} V=\lambda \frac{\partial}{\partial b_{1}} A$.)
8. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.
i. The graph of a solution of the differential equation $\frac{d y}{d t}=\cos y$ is a sinusoidal wave.
ii. The graph of a solution of the differential equation $\frac{d y}{d t}=\sin t$ is a sinusoidal wave.
iii. The curve $\mathbf{r}(t)=\left\langle\frac{1}{4} t^{3}-2, \frac{4}{t}-3, \cos (t-2)\right\rangle$ is tangent to the surface $x^{3}+y^{3}+z^{3}-x y z=0$ at the point $(0,-1,1)$.

