MTH 132.12 Final Exam Review

Answer ten of the following questions on a separate sheet for your quiz 12 grade. You must answer questions 7, 8, 9, and 14. Due Wednesday, 27 April.

1. Find the following limits, or show that they do not exist.
(a) $\lim _{x \rightarrow 1} \frac{\sin ^{2}(x-1)}{(x-1)}$
(b) $\lim _{x \rightarrow 0^{+}} \frac{|x|}{x^{2}}$
(c) $\lim _{t \rightarrow \infty} \frac{\cos (t)}{t}$
(d) $\lim _{t \rightarrow 0} \frac{\tan (t)}{2 t}$
2. Show, using the formal definition of limit, that $\lim _{t \rightarrow 9} \sqrt{t+7}=4$.
3. Establish, using the definition of the derivative, that $\left.\frac{d}{d s}\right|_{s=5}\left(s^{2}+s+1\right)=11$.
4. Where is the function $f(x)=\frac{|\sin (x)|}{\cos (x)}$ continuous? Where is it differentiable?
5. Is the function $g(s)=\left\{\begin{array}{ll}s & -1 \leq s<0 \\ \sin (s) & 0 \leq s \leq \pi\end{array}\right.$ continuous at $s=0$? Is it differentiable at $s=0$? Explain.
6. Differentiate the following functions:
(a) $z=\frac{1}{\sqrt{t}+1}$
(b) $u=\left(\frac{\tan \theta}{1+\sin \theta}\right)^{2}$
(c) $y=\tan (\cos (x))$
(d) $\ell=\tan (x) \cos (x)$
(e) $h=\int_{1}^{t} \sin (q) d q$
(f) $h=\int_{t}^{5} \frac{2 z}{z^{2}+1} d z$
7. Find the following indefinite integrals.
(a) $\int\left(t-\frac{4}{t}\right)\left(t+\frac{4}{t}\right) d t$
(b) $\int \sec (t) \tan (t) \sqrt{1+3 \sec (t)} d t$
(c) $\int \cos ^{2}(z) d z$
8. Let f be a function which has a positive derivative everywhere, and $f(1)=0$. Answer the following questions about $g(t)=\int_{0}^{t} f(x) d x$.
(a) Is g differentiable?
(b) Is g is continuous?
(c) Give a formula for the tangent line to the graph of g at $t=1$.
(d) What is the concavity of the graph of g ?
(e) What are the critical points of g ?
(f) What are the inflection points of g ?
9. What is the average value of the function $g(z)=|\sin (z) \cos (z)|$ on the interval $[0,2 \pi]$?
10. Find a function y which satsifies $\frac{d y}{d x}=3 \sin ^{2}(x)+2$ and $y(\pi)=\frac{\pi}{2}$.
11. Set up, but do not evaluate, the Riemann sum with $n=5$, using the right-hand method, which estimates $\int_{1}^{6}\left(x^{2}+1\right) d x$. Use Σ-notation.
12. Find the height and radius of the largest (i.e. with the most volume) cylinder which can be fit inside a sphere of radius $\sqrt{3}$.
13. Find the tangent and normal lines to the graph of the relation $y=\sqrt{x y}$ at the point $(1,1)$.
14. Let $h(z)=z^{2}+z-6$.
(a) What is the signed area under the graph of h from $z=-4$ to $z=4$?
(b) What is the total area between the graph of h and the z-axis, from $z=-4$ to $z=4$? (Hint. You'll need to find the zeroes of h.)
15. Find the local and global extreme values of the function $y(x)=-x^{2}+2 \sqrt{x}$ on the interval $[0, \sqrt[3]{4}]$.
16. Let $f(x)$ be a continuous function. Suppose that $0 \leq f(x) \leq 1$ for all x in the interval $[0,1]$. Show that there is some c in $[0,1]$ such that $f(c)=c$.
17. Suppose the graph below is my velocity in miles per hour.

(a) What is my total change in position after 5 hours?
(b) What is the total distance I have walked in 5 hours?
18. Show that for any numbers $a, b,|\cos (b)-\cos (a)| \leq|b-a|$. (Hint. Use a Theorem and $|\sin (x)| \leq 1$.)
19. The following table gives information about the functions f and g.

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
-1	1	1	0	3
0	0	2	0	0
1	2	3	2	0
2	3	-1	-1	2
3	-1	0	3	-1

(a) $\left.\frac{d}{d x}\right|_{x=1}(f(x)+g(x))=$
(b) $\left.\frac{d}{d x}\right|_{x=0}(f(x) g(x))=$
(c) $\left.\frac{d}{d x}\right|_{x=2}\left(\frac{f(x)}{g(x)}\right)=$
(d) $\left.\frac{d}{d x}\right|_{x=1}(f(g(x)))=$
(e) $\left.\frac{d}{d x}\right|_{x=1}(g(f(x)))=$
(f) $\left.\frac{d}{d x}\right|_{x=-1}\left((f(x))^{2}\right)=$

