## MTH 132.12 Quiz 10

Friday 8 April 2011
Name:
Show all your work. Points will be deducted for incomplete work. No calculators are allowed.

1. Write the following sums using $\Sigma$ notation.
(a) $2+5+8+11+14+17+20$

$$
\sum_{k=0}^{6}(3 k+2) \text { or } \sum_{k=1}^{7}(3 k-1)
$$

(b) $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}$

$$
\sum_{k=0}^{6} \frac{1}{k+2} \text { or } \sum_{k=1}^{7} \frac{1}{k+1} \text { or } \sum_{k=2}^{8} \frac{1}{k}
$$

2. Suppose $\sum_{k=1}^{n} a_{k}=2$ and $\sum_{k=1}^{n} b_{k}=3$.
(a) What is $\sum_{k=1}^{n}\left(2 a_{k}+b_{k}\right)$ ?

$$
\begin{aligned}
\sum_{k=1}^{n}\left(2 a_{k}+b_{k}\right) & =\sum_{k=1}^{n} 2 a_{k}+\sum_{k=1}^{n} b_{k} \\
& =2 \sum_{k=1}^{n} a_{k}+\sum_{k=1}^{n} b_{k} \\
& =2 \cdot 2+3=7
\end{aligned}
$$

(b) What is $\sum_{k=1}^{n}\left(b_{k}+1\right)$ ?

$$
\begin{aligned}
\sum_{k=1}^{n}\left(b_{k}+1\right) & =\sum_{k=1}^{n} b_{k}+\sum_{k=1}^{n} 1 \\
& =3+n
\end{aligned}
$$

3. What is $\int_{1}^{5} \sqrt{16-(x-1)^{2}} d x$ ? (Hint. The graph $y=\sqrt{16-(x-1)^{2}}$ is a familiar shape.)
$\int_{1}^{5} \sqrt{16-(x-1)^{2}} d x$ is the area between the x-axis, the line $x=1$, and the upper half of the circle $(x-1)^{2}+y^{2}=16$. Thus it is the area of one-quarter of a disc of radius 4 .

So $\int_{1}^{5} \sqrt{16-(x-1)^{2}} d x=\frac{1}{4} \pi 4^{2}=4 \pi$.

