MTH 132.12 Quiz 2

Friday 28 January 2011
Name:
Show all your work. Points will be deducted for incomplete work. No calculators are allowed.

1. For each statement below, indicate whether it is true or false. Give a short explanation.
(a) $\lim _{x \rightarrow 0} \frac{1}{x}=\infty$

False. $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$ but $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$
(b) $\lim _{x \rightarrow 1} \frac{\sin \left(x^{2}-1\right)}{x^{2}-1}=1$

True. $\lim _{x \rightarrow 1} x^{2}-1=0$, so we can use the fact that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.
(c) $\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}-1\right)}{x^{2}-1}=1$

False. The numerator is bounded by 1 and -1 , but the numerator is growing without bound. Hence the limit is 0 , not 1 .
2. Consider the function $h(t)= \begin{cases}\frac{t^{2}-3 t-4}{(t-4)(t+3)} & \text { if } t \neq 4,-3 \\ 12 & \text { if } t=4 \\ 1 & \text { if } t=-3\end{cases}$
(a) What are the discontinuities of $h(t)$? Show your work.
$h(t)$ is continuous at every point except $t=-3$ and $t=4$, since it is a rational function with nonzero denominator. Compute

$$
\begin{aligned}
\lim _{t \rightarrow 4} h(t) & =\lim _{t \rightarrow 4} \frac{t^{2}-3 t-4}{(t-4)(t+3)} \\
& =\lim _{t \rightarrow 4} \frac{t+1}{t+3} \\
& =\frac{5}{7}
\end{aligned}
$$

Since this limit is not equal to $h(4), h$ is not continuous at $t=4$.
On the other hand, at $t=-3, h(t)$ exhibits unbounded growth, hence is not continuous.
(b) Which of the discontinuities of $h(t)$ are removable? Explain.

If we define $H(t)=\left\{\begin{array}{ll}h(t) & \text { if } t \neq 4 \\ \frac{5}{7} & \text { if } t=4\end{array}\right.$, then $H(t)$ is continuous at $t=4$, and $H(t)$ is a continuous extension of $h(t)$. So the discontinuity of $h(t)$ at $t=4$ is removable.
On the other hand, $h(t)$ exhibits unbounded growth near $t=-3$, so the discontinuity there is not removable.

