MTH 132.12 Quiz 5

Friday 25 February 2011
Name:
Show all your work. Points will be deducted for incomplete work. No calculators are allowed.

1. Consider the circles $C_{1}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ and $C_{2}=\left\{(x, y) \mid(x-\sqrt{2})^{2}+y^{2}=1\right\}$.
(a) What are the slopes of C_{1} and C_{2}, respectively, at $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$?

For C_{1}, we have by implicit differentiation

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x}{y}
\end{aligned}
$$

So the slope of C_{1} at $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is $-\frac{\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=-1$.
For C_{2}, we have by implicit differentiation

$$
\begin{aligned}
2(x-\sqrt{2})+2 y \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{x-\sqrt{2}}{y}
\end{aligned}
$$

So the slope of C_{2} at $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ is $-\frac{\frac{\sqrt{2}}{2}-\sqrt{2}}{\frac{\sqrt{2}}{2}}=-\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=1$.
(b) What can you say about the way the two circles intersect?

The two curves meet at right angles at the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
2. Suppose a particle is moving, with velocity given by $v(t)=-\frac{2}{t+3}$ for $t \geq 0$. Velocity is measured in furlongs per day (fur/day) and time is measured in days.
(a) What is the acceleration $a(t)$?

$$
a(t)=\frac{d}{d t}\left(-\frac{2}{t+3}\right)=\frac{d}{d t}\left(-2(t+3)^{-1}\right)=(-1)(-2)(t+3)^{-2} \frac{d}{d t}(t+3)=2(t+3)^{-2}=\frac{2}{(t+3)^{2}}
$$

(b) What are the units of $a(t)$?
furlongs per day per day, or $\frac{\text { fur }}{\text { day }^{2}}$
(c) True or false: the particle is acted on by a constant force (i.e. the force acting on the particle does not change over time).

False. The acceleration changes in t.
(d) When does the particle change direction?

The velocity $v(t)=-\frac{2}{t+3}$ is always negative. Thus the particle never changes direction.

