MTH 132.12 Quiz 6

Due Monday 14 March 2011

Name:

The linearization of $f(x)$ at $x=c$ is the linear function whose graph is the tangent line to the graph $y=f(x)$ at $x=c$. That is, the linearization is $L(x)=f^{\prime}(c)(x-c)+f(c)$. In particular we have $L(c)=f(c)$ and $L^{\prime}(c)=f^{\prime}(c)$. Because the graph and its tangent line are close near $x=c$, we can use L to estimate values of f near c.

Sometimes the linearization is a good approximation, for example the function $f(x)=\sin x$ near $x=0$. But sometimes the linear approximation is not as good, for example the function $f(x)=\cos x$ near $x=0$. In fact $\cos x$ looks somewhat like a parabola near $x=0$, so we might ask if we can use a parabola to approximate its graph instead of a line.

We say that $Q(x)$ is the quadratic approximation to $f(x)$ at $x=c$ if $Q(x)$ is a quadratic function such that:

- $Q(c)=f(c)$
- $Q^{\prime}(c)=f^{\prime}(c)$
- $Q^{\prime \prime}(c)=f^{\prime \prime}(c)$

Answer the following questions about quadratic approximation. Be sure to show your work.

1. Given any number c, any quadratic function $Q(x)$ can be written as $Q(x)=b_{0}+b_{1}(x-c)+b_{2}(x-c)^{2}$. If $Q(x)$ is the quadratic approximation to a function $f(x)$ at $x=c$, what are b_{0}, b_{1}, and b_{2} ?
2. Let $L(x)$ be the linear approximation and $Q(x)$ the quadratic approximation to $\cos x$ at $x=0$.
(a) Give formulae for $L(x)$ and $Q(x)$.
(b) By hand, compute $L\left(\frac{1}{2}\right)$ and $Q\left(\frac{1}{2}\right)$.
(c) Use a calculator to give a three-place decimal approximation to $\cos \left(\frac{1}{2}\right)$.
(d) Carefully graph $L(x), Q(x)$, and $\cos x$ on the axes on the next page.

