MTH 132.12 Quiz 7

Friday 18 March 2011

Show all your work. Points will be deducted for incomplete work. No calculators are allowed.
Let $g(x)=\left(1-x^{2}\right)^{\frac{1}{3}}$.

1. What is $g^{\prime}(x)$?

$$
\begin{aligned}
\frac{d}{d x} g(x) & =\frac{1}{3}\left(1-x^{2}\right)^{-\frac{2}{3}} \frac{d}{d x}\left(1-x^{2}\right) \\
& =\frac{-2 x}{3\left(1-x^{2}\right)^{\frac{2}{3}}}
\end{aligned}
$$

2. Find the critical points of $g(x)$.
$g^{\prime}(x)$ does not exist when $x=1$ or $x=-1$, because the denominator is zero there. Solving the equation $g^{\prime}(x)=0$,

$$
\begin{aligned}
\frac{-2 x}{3\left(1-x^{2}\right)^{\frac{2}{3}}} & =0 \\
-\frac{2}{3} x & =0\left(1-x^{2}\right)^{\frac{2}{3}}=0 \\
x & =0
\end{aligned}
$$

So the critical points are $\{-1,0,1\}$.
3. For each critical point, say whether it is where g achieves a local maximum, a local minimum, or neither. Explain your reasoning.

First try the second derivative test. Compute:

$$
\begin{aligned}
g^{\prime \prime}(x) & =\frac{3\left(1-x^{2}\right)^{\frac{2}{3}}(-2)-(-2 x) \frac{2(-2 x)^{3}}{3\left(1-x^{2}\right)^{\frac{1}{3}}}}{9\left(1-x^{2}\right)^{\frac{4}{3}}} \\
& =\frac{-6\left(1-x^{2}\right)^{\frac{2}{3}}-\frac{8 x^{2}}{\left(1-x^{2}\right)^{\frac{1}{3}}}}{9\left(1-x^{2}\right)^{\frac{4}{3}}}
\end{aligned}
$$

$g^{\prime \prime}(0)=\frac{-6}{9}=-\frac{2}{3}<0$, so g has a local maximum at $x=0$.
The second derivative test won't work at $x= \pm 1$ since $g^{\prime \prime}$ is not defined there. So use the first derivative test. Since $\left(1-x^{2}\right)^{\frac{2}{3}}$ is always positive, $g^{\prime}(x)$ has the opposite sign from x. So $g^{\prime}(x)$ is positive whenever x is negative. In particular, $g^{\prime}(x)$ does not change sign at $x=-1$. Similarly, $g^{\prime}(x)$ does not change sign at $x=1$. So the critical points $x=1, x=-1$ are not where g achieves any local extreme.

