MTH 132.12 Quiz 9

Friday 1 April 2011
Name:
Show all your work. Points will be deducted for incomplete work. No calculators are allowed.
I have a 5-by-10-inch rectangle of paper. I want to fold the paper at two places along the 10 -inch side to make a triangular prism. See the figures below.

1. Find h in terms of x.

The base of the triangle is $10-2 x$. So we have $(5-x)^{2}+h^{2}=x^{2}$, or $h=\sqrt{10 x-25}$.
2. Write a formula for the area of the cross-section in terms of x.

From above, $A=\frac{1}{2}(10-2 x) \sqrt{10 x-25}$.
3. How far in from the edge of the paper should I make my folds, in order to maximize the volume of the resulting prism?

$$
V(x)=5 A=5 \frac{1}{2}(10-2 x) \sqrt{10 x-25}=5(5-x) \sqrt{10 x-25}
$$

So differentiating,

$$
V^{\prime}(x)=5\left[(5-x) \frac{5}{\sqrt{10 x-25}}-\sqrt{10 x-25}\right]
$$

This derivative does not exist when $x=2.5$. It is zero at the solutions of:

$$
\begin{aligned}
\frac{25-5 x}{\sqrt{10 x-25}} & =\sqrt{10 x-25} \\
25-5 x & =10 x-25 \\
50 & =15 x \\
\frac{10}{3} & =x
\end{aligned}
$$

The critical point $x=2.5$ gives $V(2.5)=0$, so we know that $x=\frac{10}{3}$ is the critical point we are looking for.

