- Find the $n=0$ Bessel series for $f(x)=1$ on $[0,2]$ with the Neumann boundary condition.
- The $n=0$ Bessel basis is $y(x)=J_{0}\left(\alpha_{i} x\right)$ where $y^{\prime}(2)=\alpha_{i} J_{0}^{\prime}\left(2 \alpha_{i}\right)=0$.
$-y_{1}(x)=1$ solves the Bessel equation with $\alpha=0$, and satisfies the boundary condition $y_{1}^{\prime}(2)=0$.
- The norm-squared of $y_{1}=1$ is

$$
\int_{0}^{2} 1 \cdot 1 \cdot x d x=\frac{1}{2} 2^{2}=2
$$

- The inner product of $y=1$ with f is:

$$
\int_{0}^{2} 1 \cdot 1 \cdot x d x=\frac{1}{2} 2^{2}=2
$$

- To find the other eigenvalues, we note that the recurrence relation

$$
x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{n+1}(x)
$$

applied with $n=0$ says that $J_{0}^{\prime}=-J_{1}$. So the α must be chosen such that

$$
-J_{1}(2 \alpha)=0
$$

i.e. $\alpha=\frac{1}{2} j_{1, i}$ for some i.

- Thus the eigenvalues are $\left\{0, \frac{j_{1,1}}{2}, \frac{j_{1,2}}{2}, \ldots\right\}$.
- Using the book's computation, the norm-squared of the eigenfunction $y(x)=J_{0}\left(\frac{j_{1, i}}{2} x\right)$ is:

$$
\left\|J_{0}\left(\frac{j_{1, i}}{2} x\right)\right\|^{2}=\frac{2^{2}}{2} J_{0}^{2}\left(\frac{j_{1, i}}{2} 2\right)=2 J_{0}^{2}\left(j_{1, i}\right)
$$

- We also compute the inner product of f with y :

$$
\int_{0}^{2} x J_{0}\left(\frac{j_{1, i}}{2} x\right) d x=\frac{4}{j_{1, i}^{2}} \int_{0}^{j_{1, i}} u J_{0}(u) d u
$$

where $u=\frac{j_{1, i}}{2} x$. Using (with $n=1$) the recurrence relation

$$
\frac{d}{d u}\left[u^{n} J_{n}\right]=u^{n} J_{n-1}
$$

we can continue:

$$
\frac{4}{j_{1, i}^{2}} \int_{0}^{j_{1, i}} u J_{0}(u) d u=\frac{4}{j_{1, i}^{2}} \int_{0}^{j_{1, i}} \frac{d}{d u}\left[u J_{1}(u)\right] d u=\frac{4}{j_{1, i}^{2}}\left[\left.u J_{1}(u)\right|_{u=0} ^{u=j_{1, i}}=0\right.
$$

since by definition $J_{1}\left(j_{1, i}\right)=0$.

- Thus the Bessel series is:

$$
1 \cdot 1+\sum_{i=1}^{\infty} 0 J_{0}\left(\frac{j_{1, i}}{2} x\right)
$$

Note that we should have expected this, since the function $f(x)=1$ is itself one of the Neumann Bessel eigenfunctions!

- Find the $n=0$ Bessel series for $f(x)=1$ on $[0,2]$ with the Dirichlet boundary condition.
- The $n=0$ Bessel basis is $y(x)=J_{0}\left(\alpha_{i} x\right)$ where $y(2)=J_{0}\left(2 \alpha_{i}\right)=0$.
- The eigenvalues are $\left\{\frac{j_{0,1}}{2}, \frac{j_{0,2}}{2}, \ldots\right\}$.
- We use the computation in class to see that the coefficient of $J_{0}\left(\frac{j_{0, i}}{2} x\right)$ is

$$
\begin{aligned}
c_{i} & =\frac{2}{2^{2} J_{1}^{2}\left(j_{0, i}\right)} \int_{0}^{2} x J_{0}\left(\frac{j_{0, i}}{2} x\right) d x \\
& =\frac{2}{2^{2} J_{1}^{2}\left(j_{0, i}\right)} \frac{4}{j_{0, i}^{2}} \int_{0}^{j_{0, i}} u J_{0}(u) d u \\
& =\frac{2}{2^{2} J_{1}^{2}\left(j_{0, i}\right)} \frac{4}{j_{0, i}^{2}}\left[\left.u J_{1}(u)\right|_{u=0} ^{u=j_{0, i}}\right. \\
& =\frac{2}{j_{0, i} J_{1}^{2}\left(j_{0, i}\right)} J_{1}\left(j_{0, i}\right) \\
& =\frac{2}{j_{0, i} J_{1}\left(j_{0, i}\right)}
\end{aligned}
$$

where we used the same trick from above.

- So the Bessel series is:

$$
f(x)=\sum_{i=1}^{\infty} \frac{2}{j_{0, i} J_{1}\left(j_{0, i}\right)} J_{0}\left(\frac{j_{0, i}}{2} x\right)
$$

