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Laplace's Equation

We want to describe how the temperature v in metal sheet at
thermal equilibrium.

assumption the sheet is homogeneous

assumption the sheet is perfectly insulated (except at the edges)
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Laplace’s equation is elliptic.
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If we insulate the x-edges, then no heat can leave across them. So

ou ou
a|x:0 =0 a|x:a =0

This is the Neumann boundary condition.

If we cool the x-edges, then

u(0,y) =0 u(a,y) =

This is the Dirichlet boundary condition.

We also need to specify u(x, b) and u(x,0)
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Finding Separable Solutions of Laplace’s Equation
@ separate variables to get X” +AX =0, Y' - \Y =0.
@ use boundary conditions to find A (SLP!)
© recognise that

o0

Z (an cos(apx) + by sin(apx)) (¢, cosh(any) + dp sinh(any))
n=0

formally solves Laplace’s equation

© Use the sine and cosine series for the boundary data u(x,0)
and u(x, b) to find the coefficients.
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Superposition Principle

The sum of two solutions of a linear equation is also a solution of
the equation.
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Mixed Boundary Values

To solve Laplace’s equation with u(x,0) = f(x), u(x, b) = g(x),
u(0,y) = F(y). u(a,y) = G(y):
@ Solve Laplace’s equation with u(x,0) = f(x), u(x, b) = g(x),
u(0,y) =0, u(a,y) = 0. Call this solution uj.
@ Solve Laplace's equation with u(x,0) =0, u(x,b) =0,
u(0,y) = F(y), u(a,y) = G(y). Call this solution w.
© The solution we're looking for is u = u1 + up.

ui(x,y) = Z B, sin(n—:x) (C,, cosh(%ry) + D, sinh(%ry))

n=1
U2(X7_y) - Z <Cn COSh(n%X) a4 Dn smh(%x)) Bn S|n(L;Ty)
n=1
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Solving Laplace's Equation on Semi-infinite Domains

To solve Laplace's equation with 0 < x < a, y > 0, note that
Y(y) =ce ™ + e

solves Y’ — a2Y = 0, but we need ¢, = 0 to ensure that Y is
bounded.

Solutions are of the form:

e}

Z (A cos(apx) + By sin(apx)) Che™ Y
n=0
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