Laplace's Equation textbook sections 13.2, 13.5

MATH 241

February 2, 2012

Laplace's Equation

We want to describe how the temperature u in metal sheet at thermal equilibrium.
assumption the sheet is homogeneous
assumption the sheet is perfectly insulated (except at the edges)

$$
\Delta u=\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

Laplace's equation is elliptic.

If we insulate the x-edges, then no heat can leave across them. So

$$
\left.\frac{\partial u}{\partial x}\right|_{x=0}=\left.0 \quad \frac{\partial u}{\partial x}\right|_{x=a}=0
$$

This is the Neumann boundary condition.

If we cool the x-edges, then

$$
u(0, y)=0 \quad u(a, y)=0
$$

This is the Dirichlet boundary condition.

We also need to specify $u(x, b)$ and $u(x, 0)$

Finding Separable Solutions of Laplace's Equation

(1) separate variables to get $X^{\prime \prime}+\lambda X=0, Y^{\prime \prime}-\lambda Y=0$.
(2) use boundary conditions to find λ (SLP!)
(3) recognise that
$\sum_{n=0}^{\infty}\left(a_{n} \cos \left(\alpha_{n} x\right)+b_{n} \sin \left(\alpha_{n} x\right)\right)\left(c_{n} \cosh \left(\alpha_{n} y\right)+d_{n} \sinh \left(\alpha_{n} y\right)\right)$
formally solves Laplace's equation
(9) Use the sine and cosine series for the boundary data $u(x, 0)$ and $u(x, b)$ to find the coefficients.

Superposition Principle

The sum of two solutions of a linear equation is also a solution of the equation.

Mixed Boundary Values

To solve Laplace's equation with $u(x, 0)=f(x), u(x, b)=g(x)$, $u(0, y)=F(y), u(a, y)=G(y)$:
(1) Solve Laplace's equation with $u(x, 0)=f(x), u(x, b)=g(x)$, $u(0, y)=0, u(a, y)=0$. Call this solution u_{1}.
(2) Solve Laplace's equation with $u(x, 0)=0, u(x, b)=0$, $u(0, y)=F(y), u(a, y)=G(y)$. Call this solution u_{2}.
(3) The solution we're looking for is $u=u_{1}+u_{2}$.

Note

$$
\begin{aligned}
& u_{1}(x, y)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{a} x\right)\left(C_{n} \cosh \left(\frac{n \pi}{a} y\right)+D_{n} \sinh \left(\frac{n \pi}{a} y\right)\right) \\
& u_{2}(x, y)=\sum_{n=1}^{\infty}\left(C_{n} \cosh \left(\frac{n \pi}{b} x\right)+D_{n} \sinh \left(\frac{n \pi}{b} x\right)\right) B_{n} \sin \left(\frac{n \pi}{b} y\right)
\end{aligned}
$$

Solving Laplace's Equation on Semi-infinite Domains

To solve Laplace's equation with $0<x<a, y>0$, note that

$$
Y(y)=c_{1} e^{-\alpha y}+c_{2} e^{\alpha y}
$$

solves $Y^{\prime \prime}-\alpha^{2} Y=0$, but we need $c_{2}=0$ to ensure that Y is bounded.

Solutions are of the form:

$$
\sum_{n=0}^{\infty}\left(A_{n} \cos \left(\alpha_{n} x\right)+B_{n} \sin \left(\alpha_{n} x\right)\right) C_{n} e^{-\alpha_{n} y}
$$

