The Wave Equation textbook sections 13.2, 13.4

MATH 241

February 7, 2012

The Wave Equation

We want to describe how the displacement u of a string varies over time.
assumption spatially-uniform tension assumption tension acts tangentially
assumption gravity is negligible

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}
$$

The wave equation is hypberbolic.

Generally we want to keep the ends of the string fixed.

$$
u(0, t)=0 \quad u(L, t)=0
$$

This is the fixed boundary condition.

If we let the ends of the string slide along parallel tracks,

$$
\frac{\partial u}{\partial x}(0, t)=0 \quad \frac{\partial u}{\partial x}(L, t)=0
$$

This is the free end condition.

We also need to specify:
initial displacement $u(x, 0)$
initial velocity $\frac{\partial u}{\partial t}(x, 0)$

Finding Separable Solutions of the Wave Equation

(1) separate variables to get $X^{\prime \prime}+\lambda X=0, Y^{\prime \prime}+\lambda Y=0$.
(2) use boundary conditions to find λ (SLP!)
(3) recognise that

$$
\sum_{n=0}^{\infty}\left(a_{n} \cos \left(\alpha_{n} x\right)+b_{n} \sin \left(\alpha_{n} x\right)\right)\left(c_{n} \cos \left(\alpha_{n} t\right)+d_{n} \sin \left(\alpha_{n} t\right)\right)
$$

formally solves the wave equation
(9) Use the sine and cosine series for the initial data $u(x, 0)$ and $\frac{\partial u}{\partial t}(x, 0)$ to find the coefficients.

d'Alembert's solution

(1) Change variables to $\xi=x+t, \eta=x-t$.
(2) We can write $u(x, t)=F(\xi)+G(\eta)$.
(3) Integrate boundary conditions to get:

$$
u(x, t)=\frac{1}{2}[f(x+t)+f(x-t)]+\frac{1}{2} \int_{x-t}^{x+t} g(s) d s
$$

Note: this works on any domain, but may cause trouble at the endpoints (cf. problem 8 of the practice exam).

Summary of Separable Solutions to Physical PDE

heat	Laplace	wave
$\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$	$\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$	$\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$
initial data, boundary data	boundary data	initial data
$e^{-\alpha^{2} t} \operatorname{trig}(\alpha x)$	trig $(\alpha x) \operatorname{trigh}(\alpha y)$	$\operatorname{trig}(\alpha x) \operatorname{trig}(\alpha t)$

in more variables

The Laplacian of $u\left(x_{1}, \ldots, x_{n}\right)$ is $\Delta u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}$.
n-dimensional heat equation:

$$
\frac{\partial u}{\partial t}=\Delta u
$$

n-dimensional wave equation:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u
$$

n-dimensional Laplace's equation:

$$
\Delta u=0
$$

