Polar and Cylindrical Coordinates textbook sections 14.1, 14.2

MATH 241

February 13, 2012

MATH 241 Polar and Cylindrical Coordinatestextbook sections 14.1, 14.2

the disc

Assume the polar ansatz:

$$u(r,\theta) = R(r)\Theta(\theta)$$

Boundary data can be given by specifying $u(R_0, \theta)$ or $\frac{\partial u}{\partial r}(R_0, \theta)$.

For the disc, we need $\Theta(\theta) = \Theta(\theta + 2\pi)$.

polar Laplacian

The Laplacian in polar coordinates is given by:

$$\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

Laplace's equation on the disc (Dirichlet)

• separate variables to get $\Theta'' + \lambda \Theta = 0$, $r^2 R'' + rR' - \lambda R = 0$.

- **2** Θ must satisfy periodic boundary conditions with period 2π .
- $\Theta(\theta) = c_1 \cos(n\theta) + c_2 \sin(n\theta)$
- recognise that

$$A_0 + \sum_{n=1}^{\infty} \left(A_n r^n \cos(n\theta) + B_n r^n \sin(n\theta) \right)$$

formally solves Laplace's equation

Use Fourier series for the boundary data u(R₀, θ) to find the coefficients A_n, B_n:

$$A_0 = \frac{a_0}{2}$$
 $A_n = R_0^{-n} a_n$ $B_n = R_0^{-n} b_n$

where a_n and b_n are the Fourier coefficients for $u(R_0, \theta)$.

Laplace's equation on the disc (Neumann)

- separate variables to get $\Theta'' + \lambda \Theta = 0$, $r^2 R'' + rR' \lambda R = 0$.
- **2** Θ must satisfy periodic boundary conditions with period 2π .

recognise that

$$A_0 + \sum_{n=1}^{\infty} \left(A_n r^n \cos(n\theta) + B_n r^n \sin(n\theta) \right)$$

formally solves Laplace's equation

• Use the Fourier series for the boundary data $\frac{\partial u}{\partial r}(R_0, \theta)$ to find the coefficients A_n , B_n :

$$A_0$$
 is free $A_n = rac{a_n}{nR_0^{n-1}}$ $B_n = rac{b_n}{nR_0^{n-1}}$

where a_n and b_n are the Fourier coefficients for $\frac{\partial u}{\partial r}(R_0, \theta)$.

Note

For the problem

$$\begin{cases} \Delta u = 0 \\ \frac{\partial u}{\partial r}(R_0, \theta) = g(\theta) \end{cases}$$

not all boundary data g are admissible!

Need $\int_0^{2\pi} g(\theta) d\theta = 0.$

白 ト イヨト イヨト

Laplace's equation on the semidisc

- **9** separate variables to get $\Theta'' + \lambda \Theta = 0$, $r^2 R'' + rR' \lambda R = 0$.
- **2** Use boundary conditions to get a SLP for Θ .
- recognise that

$$A_0 + \sum_{n=1}^{\infty} \left(A_n r^{\alpha_n} \cos(\alpha_n \theta) + B_n r^{\alpha_n} \sin(\alpha_n \theta) \right)$$

formally solves Laplace's equation

Use sine or cosine series for the boundary data to find coefficients.

radial symmetry

If we have a perfectly round drum, which we strike in the dead centre with a perfectly round mallet, we expect the subsequent vibrations to be radially symmetric.

We represent this mathematically by working in polar coordinates (r, θ) , and assuming that

$$\frac{\partial u}{\partial \theta} = 0$$

radial 2d wave equation

If we assume the radial symmetry ansatz, the displacement u(r, t) of the drumhead satisfies:

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r}$$

The fixed-boundary condition is:

$$u(R_0,t)=0$$

We also need to specify initial data: initial displacement u(r, 0)initial velocity $\frac{\partial u}{\partial t}(r, 0)$

Finding separable solutions to the radial 2d wave equation

- Separation gives $T'' + \lambda T = 0$, $rR'' + R' + r\lambda R = 0$
- **2** With $R(R_0) = 0$, this gives $\lambda = \frac{j_{0,i}^2}{R_0^2}$

Recognise that

$$\sum_{i=1}^{\infty} \left[A_i \cos\left(\frac{j_{0,i}}{R_0}t\right) + B_i \sin\left(\frac{j_{0,i}}{R_0}t\right) \right] J_0\left(\frac{j_{0,i}}{R_0}r\right)$$

formally solves the 2d wave equation.

Use the n = 0 Bessel series for the boundary data to find A_i and B_i:

$$A_i = a_i \qquad \qquad B_i = \frac{R_0 b_i}{j_{0,i}}$$

where a_i is the n = 0 Dirichlet Bessel coefficient for u(r, 0)and b_i is the n = 0 Dirichlet Bessel coefficient for $\frac{\partial u}{\partial t}(r, 0)$

Radial 3d Laplace's equation

If we assume the radial symmetry ansatz, the temperature u(r, z) of the cylinder satisfies:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 0$$

We need to specify the boundary data:

bottom
$$u(r, 0)$$

top $u(r, Z_0)$
side $u(R_0, z)$ or $\frac{\partial u}{\partial r}(R_0, z)$

Finding separable solutions to the radial 3d Laplace's equation

- Separation gives $Z'' \lambda Z = 0$, $rR'' + R' + r\lambda R = 0$
- 2 Dirichlet: $\lambda = \left(\frac{j_{0,i}}{R_0}\right)^2$; Neumann: $\lambda = \left(\frac{j_{1,i}}{R_0}\right)^2$
- 8 Recognise that

$$\sum_{i=1}^{\infty} \left[A_i \cosh\left(\alpha_i z\right) + B_i \sinh\left(\alpha_i z\right) \right] J_0\left(\alpha_i r\right)$$

formally solves Laplace's equation.

Use the n = 0 Bessel series for the boundary data to find A_i and B_i.

Radial 2d heat equation

The 2-dimensional heat equation is:

$$\frac{\partial u}{\partial t} = \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

Homework:

- Write the heat equation in polar coordinates (r, θ, t)
- When is the radial symmetry ansatz reasonable for this equation?
- What should the radial separable solutions look like?