Polar and Cylindrical Coordinates textbook sections 14.1, 14.2

MATH 241

February 13, 2012

the disc

Assume the polar ansatz:

$$
u(r, \theta)=R(r) \Theta(\theta)
$$

Boundary data can be given by specifying $u\left(R_{0}, \theta\right)$ or $\frac{\partial u}{\partial r}\left(R_{0}, \theta\right)$.
For the disc, we need $\Theta(\theta)=\Theta(\theta+2 \pi)$.

polar Laplacian

The Laplacian in polar coordinates is given by:

$$
\Delta u=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

Laplace's equation on the disc (Dirichlet)

(1) separate variables to get $\Theta^{\prime \prime}+\lambda \Theta=0, r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0$.
(2) Θ must satisfy periodic boundary conditions with period 2π.
(3) $\Theta(\theta)=c_{1} \cos (n \theta)+c_{2} \sin (n \theta)$
(9) recognise that

$$
A_{0}+\sum_{n=1}^{\infty}\left(A_{n} r^{n} \cos (n \theta)+B_{n} r^{n} \sin (n \theta)\right)
$$

formally solves Laplace's equation
(5) Use Fourier series for the boundary data $u\left(R_{0}, \theta\right)$ to find the coefficients A_{n}, B_{n} :

$$
A_{0}=\frac{a_{0}}{2} \quad A_{n}=R_{0}^{-n} a_{n} \quad B_{n}=R_{0}^{-n} b_{n}
$$

where a_{n} and b_{n} are the Fourier coefficients for $u\left(R_{0}, \theta\right)$.

Laplace's equation on the disc (Neumann)

(1) separate variables to get $\Theta^{\prime \prime}+\lambda \Theta=0, r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0$.
(2) Θ must satisfy periodic boundary conditions with period 2π.
(3) $\Theta(\theta)=c_{1} \cos (n \theta)+c_{2} \sin (n \theta)$
(9) recognise that

$$
A_{0}+\sum_{n=1}^{\infty}\left(A_{n} r^{n} \cos (n \theta)+B_{n} r^{n} \sin (n \theta)\right)
$$

formally solves Laplace's equation
(5) Use the Fourier series for the boundary data $\frac{\partial u}{\partial r}\left(R_{0}, \theta\right)$ to find the coefficients A_{n}, B_{n} :
A_{0} is free $\quad A_{n}=\frac{a_{n}}{n R_{0}^{n-1}} \quad B_{n}=\frac{b_{n}}{n R_{0}^{n-1}}$
where a_{n} and b_{n} are the Fourier coefficients for $\frac{\partial u}{\partial r}\left(R_{0}, \theta\right)$.

Note

For the problem

$$
\begin{cases}\Delta u & =0 \\ \frac{\partial u}{\partial r}\left(R_{0}, \theta\right) & =g(\theta)\end{cases}
$$

not all boundary data g are admissible!
Need $\int_{0}^{2 \pi} g(\theta) d \theta=0$.

Laplace's equation on the semidisc

(1) separate variables to get $\Theta^{\prime \prime}+\lambda \Theta=0, r^{2} R^{\prime \prime}+r R^{\prime}-\lambda R=0$.
(2) Use boundary conditions to get a SLP for Θ.
(3) recognise that

$$
A_{0}+\sum_{n=1}^{\infty}\left(A_{n} r^{\alpha_{n}} \cos \left(\alpha_{n} \theta\right)+B_{n} r^{\alpha_{n}} \sin \left(\alpha_{n} \theta\right)\right)
$$

formally solves Laplace's equation
(4) Use sine or cosine series for the boundary data to find coefficients.

radial symmetry

If we have a perfectly round drum, which we strike in the dead centre with a perfectly round mallet, we expect the subsequent vibrations to be radially symmetric.

We represent this mathematically by working in polar coordinates (r, θ), and assuming that

$$
\frac{\partial u}{\partial \theta}=0
$$

radial 2 d wave equation

If we assume the radial symmetry ansatz, the displacement $u(r, t)$ of the drumhead satisfies:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}
$$

The fixed-boundary condition is:

$$
u\left(R_{0}, t\right)=0
$$

We also need to specify initial data:
initial displacement $u(r, 0)$
initial velocity $\frac{\partial u}{\partial t}(r, 0)$

Finding separable solutions to the radial 2d wave equation
(1) Separation gives $T^{\prime \prime}+\lambda T=0, r R^{\prime \prime}+R^{\prime}+r \lambda R=0$
(2) With $R\left(R_{0}\right)=0$, this gives $\lambda=\frac{j_{0, i}^{2}}{R_{0}^{2}}$
(3) Recognise that

$$
\sum_{i=1}^{\infty}\left[A_{i} \cos \left(\frac{j_{0, i}}{R_{0}} t\right)+B_{i} \sin \left(\frac{j_{0, i}}{R_{0}} t\right)\right] J_{0}\left(\frac{j_{0, i}}{R_{0}} r\right)
$$

formally solves the 2 d wave equation.
(1) Use the $n=0$ Bessel series for the boundary data to find A_{i} and B_{i} :

$$
A_{i}=a_{i} \quad B_{i}=\frac{R_{0} b_{i}}{j_{0, i}}
$$

where a_{i} is the $n=0$ Dirichlet Bessel coefficient for $u(r, 0)$ and b_{i} is the $n=0$ Dirichlet Bessel coefficient for $\frac{\partial u}{\partial t}(r, 0)$

Radial 3d Laplace's equation

If we assume the radial symmetry ansatz, the temperature $u(r, z)$ of the cylinder satisfies:

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

We need to specify the boundary data:
bottom $u(r, 0)$
top $u\left(r, Z_{0}\right)$
side $u\left(R_{0}, z\right)$ or $\frac{\partial u}{\partial r}\left(R_{0}, z\right)$

Finding separable solutions to the radial 3d Laplace's equation
(1) Separation gives $Z^{\prime \prime}-\lambda Z=0, r R^{\prime \prime}+R^{\prime}+r \lambda R=0$
(2) Dirichlet: $\lambda=\left(\frac{j_{0}, i}{R_{0}}\right)^{2}$; Neumann: $\lambda=\left(\frac{j_{1, i}}{R_{0}}\right)^{2}$
(3) Recognise that

$$
\sum_{i=1}^{\infty}\left[A_{i} \cosh \left(\alpha_{i} z\right)+B_{i} \sinh \left(\alpha_{i} z\right)\right] J_{0}\left(\alpha_{i} r\right)
$$

formally solves Laplace's equation.
(9) Use the $n=0$ Bessel series for the boundary data to find A_{i} and B_{i}.

Radial 2d heat equation

The 2-dimensional heat equation is:

$$
\frac{\partial u}{\partial t}=\Delta u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

Homework:
(1) Write the heat equation in polar coordinates (r, θ, t)
(2) When is the radial symmetry ansatz reasonable for this equation?
(3) What should the radial separable solutions look like?

