Transform Methods II textbook sections 15.4

MATH 241

February 16, 2012

Definition

Given a function $f(x)$ defined for all x, the Fourier transform of f is

$$
\mathscr{F}\{f\}(\alpha)=\int_{-\infty}^{\infty} e^{i \alpha t} f(t) d t=\hat{f}(\alpha)
$$

This is just the complex Fourier integral!

Operational properties of the Fourier transform

$$
\text { linearity } \mathscr{F}\{a f+b g\}(\alpha)=a \mathscr{F}\{f\}(\alpha)+b \mathscr{F}\{g\}(\alpha)
$$

differentiation $\mathscr{F}\left\{f^{\prime}\right\}(\alpha)=-i \alpha \mathscr{F}\{f\}(\alpha)$
twice differentiation $\mathscr{F}\left\{f^{\prime \prime}\right\}(\alpha)=-\alpha^{2} \mathscr{F}\{f\}(\alpha)$

solving PDE with the Fourier transform

(1) If the unknown function is $u(x, y)$, apply the Fourier transform to get $U(x, \alpha)$.
(2) Get an ODE for $U(x, \alpha)$ in x with parameter α.
(3) Solve for $U(x, \alpha)$.
(9) Try to think of some $u(x, y)$ with $\mathscr{F}\{u(x, y)\}=U(x, \alpha)$.

Recall

If f is continuous at x, and its complex Fourier series is given by $C(\alpha)$, then

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} C(\alpha) e^{-i \alpha x} d \alpha
$$

so if we find $C(\alpha)$ we can find f !

Definition

The inverse Fourier transform of $F(\alpha)$ is

$$
\mathscr{F}^{-1}\{F\}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} F(s) e^{-i x s} d s=\check{F}(x)
$$

Theorem

The inverse Fourier transform is the inverse of the Fourier transform, i.e.

$$
\begin{aligned}
\mathscr{F}^{-1}\{\mathscr{F}\{f\}\}(x) & =f(x) \\
\grave{f}(x) & =f(x)
\end{aligned}
$$

Definition

A transform T is called integral if it is given by integrating against a function:

$$
T\{f\}(\alpha)=\int f(t) K(\alpha, t) d t
$$

The function $K(\alpha, t)$ is called the kernel of the transform.

Definition

The Fourier sine and Fourier cosine transforms are given by:

$$
\begin{aligned}
& \mathscr{F}_{s}\{f\}(\alpha)=\int_{0}^{\infty} f(t) \sin (\alpha t) d t \\
& \mathscr{F}_{c}\{f\}(\alpha)=\int_{0}^{\infty} f(t) \cos (\alpha t) d t
\end{aligned}
$$

Theorem

The sine and cosine transforms have integral inverses:

$$
\begin{aligned}
& \mathscr{F}_{s}^{-1}\{F\}(x)=\frac{2}{\pi} \int_{0}^{\infty} F(s) \sin (s x) d s \\
& \mathscr{F}_{c}^{-1}\{F\}(x)=\frac{2}{\pi} \int_{0}^{\infty} F(s) \cos (s x) d s
\end{aligned}
$$

The Fourier transforms are known as unitary.

Sine and cosine transforms and derivatives

$$
\begin{aligned}
& \mathscr{F}_{s}\left\{f^{\prime}\right\}(\alpha)=-\alpha \mathscr{F}_{c}\{f\}(\alpha) \\
& \mathscr{F}_{c}\left\{f^{\prime}\right\}(\alpha)=\alpha \mathscr{F}_{s}\{f\}(\alpha)-f(0) \\
& \mathscr{F}_{s}\left\{f^{\prime \prime}\right\}(\alpha)=-\alpha^{2} \mathscr{F}_{s}\{f\}(\alpha)+\alpha f(0) \\
& \mathscr{F}_{c}\left\{f^{\prime \prime}\right\}(\alpha)=-\alpha^{2} \mathscr{F}_{c}\{f\}(\alpha)-f^{\prime}(0)
\end{aligned}
$$

