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Recall

An assignment to each point in the plane of a 2-vector is a vector
field.

That’s exactly what a complex function does!

The vector fields we might be interested in are velocity fields of
incompressible fluids.

If we drop a particle into an incompressible fluid flowing by the
vector field 〈u, v〉, its motion is given by:

dx

dt
= u(x , y)

dy

dt
= v(x , y)

The analytic properties of the function turn out to say a lot about
the fluid.
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Definition

The complex function f has the limit L at z0, or

lim
z→z0

f (z) = L

if for every ε > 0 there is a δ > 0 for which

0 < |z − z0| < δ

guarantees
|f (z)− L| < ε

Note

Formally this is identical to the definition of limits for real
functions! But every symbol means something different now.
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Theorem

Let f = u + iv be a complex function, z0 = x0 + iy0, L = A + iB.
Then

lim
z→z0

f (z) = L

if and only if
lim

(x ,y)→(x0,y0)
u(x , y) = A

and
lim

(x ,y)→(x0,y0)
v(x , y) = B

Recall

The Two-Path Test says that if u (or v) has two different limits
along two different paths into (x0, y0), then the limit of u (or v) at
(x0, y0) does not exist!
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Theorem

Limits respect arithmetic, i.e.

lim
z→z0

(f (z)± g(z)) =

(
lim

z→z0

f (z)

)
±

(
lim

z→z0

g(z)

)
lim

z→z0

(f (z)g(z)) =

(
lim

z→z0

f (z)

) (
lim

z→z0

g(z)

)
lim

z→z0

|f (z)| = | lim
z→z0

f (z)|
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Definition

f is continuous at z0 if f (z0) = limz→z0 f (z).

f is continuous on S if f is continuous at each point of S .

Corollary

Sums, products, and quotients of continuous functions are
continuous.
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Definition

The complex derivative of f at z0 is

f ′(z0) = lim
z→z0

f (z)− f (z0)

z − z0
= lim

∆z→0

f (z0 + ∆z)− f (z0)

∆z

provided the limit exists.

If f ′(z0) exists, we say f is differentiable at z0.

Note

Again, this is formally the same as for real differentiation. But
notice that

The limit is a complex limit.

The differential ∆z is a complex number: ∆z = ∆x + i∆y
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Theorem

All formal properties of the real derivative carry over.

Caution

That’s just about all that carries over. Many functions which
“look” complex-differentiable aren’t.
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