Complex Functions II textbook section 17.4

MATH 241

February 28, 2012

Recall

An assignment to each point in the plane of a 2 -vector is a vector field.

That's exactly what a complex function does!
The vector fields we might be interested in are velocity fields of incompressible fluids.

If we drop a particle into an incompressible fluid flowing by the vector field $\langle u, v\rangle$, its motion is given by:

$$
\begin{aligned}
& \frac{d x}{d t}=u(x, y) \\
& \frac{d y}{d t}=v(x, y)
\end{aligned}
$$

The analytic properties of the function turn out to say a lot about the fluid.

Definition

The complex function f has the limit L at z_{0}, or

$$
\lim _{z \rightarrow z_{0}} f(z)=L
$$

if for every $\epsilon>0$ there is a $\delta>0$ for which

$$
0<\left|z-z_{0}\right|<\delta
$$

guarantees

$$
|f(z)-L|<\epsilon
$$

Note

Formally this is identical to the definition of limits for real functions! But every symbol means something different now.

Theorem

Let $f=u+i v$ be a complex function, $z_{0}=x_{0}+i y_{0}, L=A+i B$. Then

$$
\lim _{z \rightarrow z_{0}} f(z)=L
$$

if and only if

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=A
$$

and

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=B
$$

Recall

The Two-Path Test says that if u (or v) has two different limits along two different paths into $\left(x_{0}, y_{0}\right)$, then the limit of u (or $\left.v\right)$ at $\left(x_{0}, y_{0}\right)$ does not exist!

Theorem

Limits respect arithmetic, i.e.

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}(f(z) \pm g(z)) & =\left(\lim _{z \rightarrow z_{0}} f(z)\right) \pm\left(\lim _{z \rightarrow z_{0}} g(z)\right) \\
\lim _{z \rightarrow z_{0}}(f(z) g(z)) & =\left(\lim _{z \rightarrow z_{0}} f(z)\right)\left(\lim _{z \rightarrow z_{0}} g(z)\right) \\
\lim _{z \rightarrow z_{0}}|f(z)| & =\left|\lim _{z \rightarrow z_{0}} f(z)\right|
\end{aligned}
$$

Definition

f is continuous at z_{0} if $f\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} f(z)$.
f is continuous on S if f is continuous at each point of S.

Corollary

Sums, products, and quotients of continuous functions are continuous.

Definition

The complex derivative of f at z_{0} is

$$
f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

provided the limit exists.
If $f^{\prime}\left(z_{0}\right)$ exists, we say f is differentiable at z_{0}.

Note

Again, this is formally the same as for real differentiation. But notice that

- The limit is a complex limit.
- The differential Δz is a complex number: $\Delta z=\Delta x+i \Delta y$

Theorem

All formal properties of the real derivative carry over.

Caution

That's just about all that carries over. Many functions which "look" complex-differentiable aren't.

