Analyticity and the Cauchy-Riemann Equations textbook section 17.5

MATH 241

March 13, 2012

Recall

$f(z)$ is differentiable at $z=z_{0}$ if the limit

$$
f^{\prime}\left(z_{0}\right)=\lim _{\Delta z \rightarrow 0} \frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}
$$

exists.

Definition

f is analytic at z_{0} if f is differentiable in a neighbourhood of z_{0}.
f is analytic on the set S if f is analytic at every point of S.
f is entire if f is analytic on the entire plane.

Theorem

If $f(x+i y)=u(x, y)+i v(x, y)$ is differentiable at $z_{0}=x_{0}+i y_{0}$, then u and v satisfy the Cauchy-Riemann equations

$$
\begin{aligned}
& \left.\frac{\partial u}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=\left.\frac{\partial v}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \\
& \left.\frac{\partial v}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=-\left.\frac{\partial u}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}
\end{aligned}
$$

formulas for $f^{\prime}(z)$

The Cauchy-Riemann equations give two useful formulas for $f^{\prime}(z)$:

$$
\begin{aligned}
f^{\prime}(z) & =\frac{\partial u}{\partial x}+i \frac{\partial v}{\partial x} \\
f^{\prime}(z) & =\frac{\partial v}{\partial y}-i \frac{\partial u}{\partial y}
\end{aligned}
$$

a mnemonic

$$
\frac{d}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)
$$

Theorem

Suppose u and v are continuous and have continuous first partials in a domain D. If u and v satisfy the Cauchy-Riemann equations in D, then $f=u+i v$ is analytic in D.

Theorem

If $f(x+i y)=u(x, y)+i v(x, y)$ is analytic in a domain D, then u and v are harmonic, i.e. satisfy Laplace's equation:

$$
\begin{aligned}
\Delta u & =0 \\
\Delta v & =0
\end{aligned}
$$

Definition

If $u(x, y)$ is a function which is harmonic in a domain D, and $v(x, y)$ is another function on D so that

$$
f(x+i y)=u(x, y)+i v(x, y)
$$

is analytic in D, we call v a harmonic conjugate of u.

