Series Representations I textbook section 12.1

MATH 241

January 12, 2012

MATH 241 Series Representations Itextbook section 12.1

Given f(t) and g(t) two functions defined on an interval [a, b], the inner product of f and g on [a, b] is

$$(f,g) = \int_a^b f(t)g(t)dt$$

f and g are orthogonal on the interval [a, b] if (f, g) = 0.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Theorem

If f, g, h are functions on the interval [a, b] and c is a real number, then

$$(f + g, h) = (f, h) + (g, h)$$

 $(f, g + h) = (f, g) + (f, h)$
 $(cf, g) = c(f, g) = (f, cg)$
 $(f, f) \ge 0$

In the last inequality, (f, f) = 0 exactly when f is the constant function 0.

Definition

The norm of f on [a, b] is

$$\|f\| = \sqrt{(f,f)}$$

An orthogonal set on [a, b] is a set of functions $\{\phi_m\}$ defined on [a, b] so that $(\phi_m, \phi_n) = 0$ whenever $m \neq n$. An orthonormal set on [a, b] is an orthogonal set with $\|\phi_m\| = 1$.

important e.g.g.

The following are orthogonal sets:

•
$$\{1, \cos(mx)\}, m = 1, 2, 3, \dots$$
 on $[-\pi, \pi]$

•
$$\{1, \sin(mx)\}, m = 1, 2, 3, \dots$$
 on $[-\pi, \pi]$

• $\{1, \cos(mx), \sin(nx)\}, m, n = 1, 2, 3, \dots \text{ on } [-\pi, \pi]$

important e.g.g.

The following are orthonormal sets:

•
$$\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(mx)}{\sqrt{\pi}}\right\}, m = 1, 2, 3, \dots \text{ on } [-\pi, \pi]$$

• $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\sin(mx)}{\sqrt{\pi}}\right\}, m = 1, 2, 3, \dots \text{ on } [-\pi, \pi]$
• $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(mx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}}\right\}, m, n = 1, 2, 3, \dots \text{ on } [-\pi, \pi]$

æ

<> ≣ ► < ≣ ►</p>

If $\{\phi_m\}$ is an orthogonal set on [a, b], and f(x) can be written as $f(x) = c_0\phi_0(x) + c_1\phi_1(x) + \cdots$, then

$$c_m = \frac{(f, \phi_m)}{\|\phi_m\|^2}$$

That is,

$$f(x) = \sum_{m=0}^{\infty} \frac{(f, \phi_m)}{\|\phi_m\|^2} \phi_m(x)$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

The inner product on [a, b] with weight function w is

$$(f,g)_w = \int_a^b f(t)g(t)w(t)dt$$

Two functions f, g are orthogonal on [a, b] with respect to the weight function w if $(f, g)_w = 0$.

If $\{\phi_m\}$ are orthogonal with respect to w and $f(x) = c_0\phi_0(x) + c_1\phi_1(x) + \cdots$, then

$$c_m = \frac{(f,\phi_m)_w}{(\phi_m,\phi_m)_w}$$

The orthogonal set $\{\phi_m\}$ is called complete if the only continuous function on [a, b] which is orthogonal to every $\{\phi_m\}$ is the constant function 0.

Telling whether an orthogonal set is complete

. . . is beyond the scope of this course.