Series Representations I textbook section 12.1

MATH 241

January 12, 2012

Definition

Given $f(t)$ and $g(t)$ two functions defined on an interval $[a, b]$, the inner product of f and g on $[a, b]$ is

$$
(f, g)=\int_{a}^{b} f(t) g(t) d t
$$

f and g are orthogonal on the interval $[a, b]$ if $(f, g)=0$.

Theorem

If f, g, h are functions on the interval $[a, b]$ and c is a real number, then

$$
\begin{aligned}
(f+g, h) & =(f, h)+(g, h) \\
(f, g+h) & =(f, g)+(f, h) \\
(c f, g) & =c(f, g)=(f, c g) \\
(f, f) & \geq 0
\end{aligned}
$$

In the last inequality, $(f, f)=0$ exactly when f is the constant function 0 .

Definition

The norm of f on $[a, b]$ is

$$
\|f\|=\sqrt{(f, f)}
$$

Definition

An orthogonal set on $[a, b]$ is a set of functions $\left\{\phi_{m}\right\}$ defined on $[a, b]$ so that $\left(\phi_{m}, \phi_{n}\right)=0$ whenever $m \neq n$.
An orthonormal set on $[a, b]$ is an orthogonal set with $\left\|\phi_{m}\right\|=1$.

important e.g.g.

The following are orthogonal sets:

- $\{1, \cos (m x)\}, m=1,2,3, \ldots$ on $[-\pi, \pi]$
- $\{1, \sin (m x)\}, m=1,2,3, \ldots$ on $[-\pi, \pi]$
- $\{1, \cos (m x), \sin (n x)\}, m, n=1,2,3, \ldots$ on $[-\pi, \pi]$

important e.g.g.

The following are orthonormal sets:

- $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos (m x)}{\sqrt{\pi}}\right\}, m=1,2,3, \ldots$ on $[-\pi, \pi]$
- $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\sin (m x)}{\sqrt{\pi}}\right\}, m=1,2,3, \ldots$ on $[-\pi, \pi]$
- $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{\cos (m x)}{\sqrt{\pi}}, \frac{\sin (n x)}{\sqrt{\pi}}\right\}, m, n=1,2,3, \ldots$ on $[-\pi, \pi]$

If $\left\{\phi_{m}\right\}$ is an orthogonal set on $[a, b]$, and $f(x)$ can be written as $f(x)=c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+\cdots$, then

$$
c_{m}=\frac{\left(f, \phi_{m}\right)}{\left\|\phi_{m}\right\|^{2}}
$$

That is,

$$
f(x)=\sum_{m=0}^{\infty} \frac{\left(f, \phi_{m}\right)}{\left\|\phi_{m}\right\|^{2}} \phi_{m}(x)
$$

Definition

The inner product on $[a, b]$ with weight function w is

$$
(f, g)_{w}=\int_{a}^{b} f(t) g(t) w(t) d t
$$

Two functions f, g are orthogonal on $[a, b]$ with respect to the weight function w if $(f, g)_{w}=0$.

If $\left\{\phi_{m}\right\}$ are orthogonal with respect to w and $f(x)=c_{0} \phi_{0}(x)+c_{1} \phi_{1}(x)+\cdots$, then

$$
c_{m}=\frac{\left(f, \phi_{m}\right)_{w}}{\left(\phi_{m}, \phi_{m}\right)_{w}}
$$

*

Definition

The orthogonal set $\left\{\phi_{m}\right\}$ is called complete if the only continuous function on $[a, b]$ which is orthogonal to every $\left\{\phi_{m}\right\}$ is the constant function 0 .

Telling whether an orthogonal set is complete

. . . is beyond the scope of this course.

