Contour Integrals I textbook sections 18.1-18.2

MATH 241

March 22, 2012

Recall

Given a real function of two real variables $g(x, y)$ and a smooth path in the plane C, with paramerisation $(x(t), y(t)), a \leq t \leq b$, we can define the line integral:

$$
\int_{C} g d s=\int_{a}^{b} g(x(t), y(t)) \frac{d s}{d t} d t
$$

where s is the arclength parameter.

$$
\begin{aligned}
& \frac{d s}{d t}=|v|=\sqrt{\frac{d x^{2}}{d t}+{\frac{d y^{2}}{d t}}^{2}} \text {, so this is just } \\
& \qquad \int_{a}^{b} g(x(t), y(t)) \sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}} d t
\end{aligned}
$$

Definition

A smooth contour is a $z(t)=x(t)+i y(t)$, where $(x(t), y(t))$ parametrises a smooth curve, i.e.
(1) $x(t)$ and $y(t)$ are differentiable, and their derivatives are continuous.
(2) $\sqrt{\frac{d x^{2}}{d t}+\frac{d y^{2}}{d t}}$ is never 0 .

Given a smooth contour parametrised by $z(t)$, $a \leq t \leq b$, we write $\frac{d z}{d t}=z^{\prime}(t)=\frac{d x}{d t}+i \frac{d y}{d t}$ and require $z^{\prime} \neq 0$.

Definition

A piecewise-smooth contour is a finite collection of smooth contours joined end to end.

Definition

Given a complex function $f(z)$ continuous around* a piecewise-smooth contour C, we define the contour integral

$$
\int_{C} f(z) d z=\lim \sum_{k=1}^{n} f\left(w_{k}\right)\left(z_{k}-z_{k-1}\right)
$$

where $z(a)=z_{0}, z(b)=z_{n}$, and z_{1}, \ldots, z_{n-1} are points along C, with w_{k} a point on C between z_{k-1} and z_{k}, and the limit is taken as the distances between any two z_{k-1}, z_{k} go to zero.

Note

Each of these Riemann sums is a complex number, so $\int_{c} f(z) d z$ is a complex number.

Formulae for $\int_{C} f(z) d z$

If $f=u+i v$ and C is parametrised by $z(t), a \leq t \leq b$, then

$$
\begin{gathered}
\int_{C} f(z) d z=\int_{C}(u d x-v d y)+i \int_{C}(v d x+u d y) \\
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
\end{gathered}
$$

Formal properties of the contour integral

Provided all integrals in sight make sense,

$$
\begin{aligned}
\int_{C}(f(z)+g(z)) d z & =\int_{C} f(z) d z+\int_{C} g(z) d z \\
\int_{C_{1}+C_{2}} f(z) d z & =\int_{C_{1}} f(z) d z+\int_{C_{2}} f(z) d z \\
\int_{-C} f(z) d z & =-\int_{C} f(z) d z
\end{aligned}
$$

where + means concatenation and - means reversal.

Theorem

If C has length L and $|f(z)| \leq M$ along C, then

$$
\left|\int_{C} f(z) d z\right| \leq M L
$$

WARNING: SIMPLE CLOSED CURVES AHEAD

Recall

The circulation of the field $\mathbf{F}=\langle M, N\rangle$ around the simple closed contour C is:

$$
\int_{C} \mathbf{F} \cdot \mathbf{T} d s=\int_{C} M d x+N d y
$$

The flux of F across C is:

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C} M d y-N d x
$$

Reason to Use Contour Integrals

If C is a simple closed countour, then

$$
\int_{C} \overline{f(z)} d z=(\text { circulation of } f)+i(\text { flux of } f)
$$

Theorem (Cauchy-Goursat version 1)

If f is analytic along a simple closed contour C, and also analytic in the interior of C, then

$$
\int_{C} f(z) d z=0
$$

Theorem (Cauchy-Goursat version 2)

If f is analytic in the simply-connected domain D, and C is a simple closed contour in D, then

$$
\int_{C} f(z) d z=0
$$

