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Recall

A domain D is simply connected if any loop in D can be
continuously deformed to a point.

Definition

A domain which is not simply-connected is multiply-connected.

A domain with 1 hole is doubly-connected, a domain with two
holes is triply-connected, etc.
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Theorem (Cauchy-Goursat for simple closed curves)

If f is analytic along a simple closed contour C, and also analytic
in the interior of C, then

Aﬂ@&:o

Theorem (Cauchy-Goursat for simply-connected domains)

If f is analytic in the simply-connected domain D, and C is a
simple closed contour in D, then

Aﬂ@&:o
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Deformation of Contours

B
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Deformation of Contours

If f is analytic in the region bounded by C; and C;, then

/ f(z)dz=0
A1+Di1+Ax+D»

/ f(z)dz = 0
Bi—D>+B>—D»

So
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Theorem (Cauchy-Goursat for multiply-connected domains)

Suppose C is a simple closed contour, and Cy, ..., C, are
nonintersecting simple closed contours which lie in the interior of
C. If f(z) is analytic on the region bounded by C, Cy, ..., C,, then

§1§C f(z)dz = §1§C1 f(z)dz +--- +§l§n f(z)dz
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Useful computation

If Cy is a simple closed contour with zy inside Cy, then

d
§1§ 2 _oni
COZ_ZO

d
?gzn_o
Go (z — 20)

If n# 1, then
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Theorem (Cauchy-Goursat for nonsimple contours)

Suppose D is a simply-connected domain, C is a closed contour in
D, and f is analytic in D. Then

/C f(z)dz =0
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Theorem (Fundamental Theorem of Contour Integration)

Suppose there is some F(z) with F'(z) = f(z) for all z in the
domain D. Then if C is a contour in D with endpoints zy, z1,

/ f(2)dz = F(z1) — F(z0)
C

If D is a simply-connected domain and f is analytic in D, then f
has an antiderivative in D, i.e. there is F(z) defined on D with
d

LF=f.

dz

The antiderivative F is itself analytic in D (since F’(z) exists in a
domain), so F has an antiderivative as well.
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