Cauchy's Formulae textbook section 18.4

MATH 241

March 29, 2012

Theorem (Cauchy-Goursat)

If f is analytic in a domain D, then for purposes of integrating f, we can deform contours across D.

Computation

$\oint_{C} \frac{d z}{z-z_{0}}=2 \pi i$, where C is any simple closed contour around z_{0}.

Note

If $f(z)$ is analytic in D and z_{0} is a point of D, then $\frac{f(z)}{z-z_{0}}$ is analytic everywhere in D except at z_{0}.

Cauchy's Formula 0

If D is a simply-connected domain, f is analytic in D, and z_{0} is a point of D, then

$$
\oint_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right)
$$

for any simple closed contour C around z_{0}.
We could also write

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{z-z_{0}} d z
$$

Theorem

If f and g are both analytic in the simply-connected domain D, and $f(z)=g(z)$ for all z in some simple closed contour C, then $f(z)=g(z)$ for all z inside C.

Cauchy's Formula 1

If D is a simply-connected domain, f is analytic in D, and z_{0} is a point of D, then

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z=2 \pi i f^{\prime}\left(z_{0}\right)
$$

for any simple closed contour C around z_{0}.

Cauchy's Formula in general

If D is a simply-connected domain, f is analytic in D, and z_{0} is a point of D, then

$$
\oint_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z=\frac{2 \pi i}{n!} f^{(n)}\left(z_{0}\right)
$$

for any simple closed contour C around z_{0}.

Remarkable Fact

If D is a simply-connected domain and f is analytic in D, then f has derivatives of all orders in D.

This is completely different from real functions!

