Sequences and Series textbook section 19.1

MATH 241

April 5, 2012

MATH 241 Sequences and Series textbook section 19.1

A sequence of complex numbers $\{z_k\}$ is a choice of complex number for each natural number k.

Definition

The sequence $\{z_k\}$ converges to z if for every $\epsilon > 0$ there is N a natural number so that $k \ge N$ guarantees $|z - z_k| < \epsilon$.

Theorem

$$z_k \to z \, \operatorname{exactly} \, \operatorname{if} \, \mathfrak{Re}(z_k) \to \mathfrak{Re}(z) \, \operatorname{AND} \, \mathfrak{Im}(z_k) \to \mathfrak{Im}(z)$$

$$z_k \rightarrow 0$$
 exactly if $|z_k| \rightarrow 0$

If $z \neq 0$, then $z_k \rightarrow z$ exactly if $|z_k| \rightarrow |z|$ AND $\arg(z_k) \rightarrow \arg(z)$.

In other words

 $\{z_k\}$ is convergent exactly if the coordinates of z_k are convergent as real sequences.

A B M A B M

If $\{z_k\}$ are a sequence, the partial sums of $\{z_k\}$ are $S_n = z_1 + \cdots + z_n$.

If the sequence of partial sums $\{S_n\}$ converges to S, we write

$$\sum_{k=1}^{\infty} z_k = S$$

and say the series $\sum_{k=1}^{\infty} z_k$ converges to S. If the $\{S_n\}$ diverge, we say that the series $\sum_{k=1}^{\infty} z_k$ diverges.

Given a sequence $\{z_k\}$, consider the real series

$$\sum_{k=1}^{\infty} |z_k|$$

If this series converges, we say that the complex series $\sum_{k=1}^{\infty} z_k$ converges absolutely.

Theorem If $\sum_{k=1}^{\infty} z_k$ converges absolutely, then $\sum_{k=1}^{\infty} z_k$ converges.

Important e.g.

converges to
$$\frac{1}{1-z}$$
 if $|z| < 1$ and diverges if $|z| \ge 1$.

æ

▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ …

Theorem (Ratio Test)

Given a series
$$\sum_{k=1}^{\infty} z_k$$
, let $L = \lim \left| \frac{z_{k+1}}{z_k} \right|$.

- If L < 1, then the series converges absolutely.
- If L > 1, then the series diverges.
- If L = 1, we don't know.

Theorem (Root Test)

Given a series $\sum_{k=1}^{\infty} z_k$, let $L = \lim \sqrt[k]{|z_k|}$.

- If L < 1, then the series converges absolutely.
- If L > 1, then the series diverges.
- If L = 1, we don't know.

Note that the Ratio Test and the Root Test are both about sequences of real numbers.

A series of the form

$$\sum_{k=0}^{\infty}a_{k}\left(z-z_{0}\right)^{k}$$

is called a power series in z with centre z_0 and coefficients $\{a_k\}$.

Theorem (radius of convergence via Ratio Test)

Given a power series

$$\sum_{k=0}^{\infty}a_{k}\left(z-z_{0}\right)^{k}$$

let $\alpha = \lim \left| \frac{a_{k+1}}{a_k} \right|$.

The power series converges absolutely for all z with $|z - z_0| < \frac{1}{\alpha}$ and diverges for all z with $|z - z_0| > \frac{1}{\alpha}$.

Theorem (radius of convergence via Root Test)

Given a power series

$$\sum_{k=0}^{\infty}a_k\left(z-z_0\right)^k$$

let $\alpha = \lim \sqrt[k]{|a_k|}$. The power series converges absolutely for all z with $|z - z_0| < \frac{1}{\alpha}$ and diverges for all z with $|z - z_0| > \frac{1}{\alpha}$.