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If f is analytic at zp, its Taylor series at z = zy is

5 2 F0z) (2 — 20

k=0
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Within its radius of convergence, a power series:
@ s continuous.
@ s differentiable.

© has derivative

f'(z) = Z kay(z — z0)*t
k=1

Corollary

A power series is analytic within its radius of convergence.

If C is a contour in the disc of convergence, then

/ Zak(zfzo)kdz: Zak/ (z — z0)< dz
€ k=0 k=0 ‘€
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Theorem (Taylor's Theorem)

If f(z) is an analytic function in the domain D, and zy is a point of
D, then the series representation

o0

Z l, F)(20) (z — 20)"

k=

is valid on any disc centred at zy which lies inside D.

To find the radius of convergence for the Taylor series of f,
compute the distance to the nearest point where f is not analytic.
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Important Taylor series

o0

k=0

These are valid for all z.
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Important Taylor series

1 = 5
=27
k=0

This is valid for |z| < 1.

Loz) = (DL (2 - 1"
k=0

This is valid for [z — 1| < 1.
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Definition

A series of the form

o0

Z ag (z — zo)k

k=—00

is called the Laurent series with centre zp and coefficients {a}.

The analytic part of the Laurent series is

o
Z ay (z — zo)k
k=0

The principal part of the Laurent series is

(0.0} o0 3

- —k
E a,k(z—zo)kzg ——
k=1 2)

= (2 -
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We expect a power series to converge on a disc: |z — z| < R.
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We expect a power series to converge on a disc: |z — z| < R.

The principal part should converge on the exterior of a disc:
r < |z — zo.
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We expect a power series to converge on a disc: |z — z| < R.

The principal part should converge on the exterior of a disc:
r < |z — zo.

So a Laurent series converges on an annulus r < |z — z| < R.
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We expect a power series to converge on a disc: |z — z| < R.

The principal part should converge on the exterior of a disc:
r<l|z—z.

So a Laurent series converges on an annulus r < |z — z| < R.
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Theorem (Laurent’s Theorem)

Suppose f(z) is analytic in the annulus r < |z — z5| < R. Then for
any z in the annulus, the Laurent series representation is valid:

o0

f(z) = Z ax (z — z)*

k=—00

where
1 f(w)

a = — — 7
2] c (W - zO)k+1

for any contour C which is equivalent to the boundary circles
|z —2|=R,|z—z|=r.

dw
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