Taylor and Laurent Series textbook sections 19.2-19.3

MATH 241

April 10, 2012

MATH 241 Taylor and Laurent Series textbook sections 19.2-19.3

Definition

If f is analytic at z_0 , its Taylor series at $z = z_0$ is

$$\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(z_0) \left(z - z_0\right)^k$$

A B + A B +

3

Theorem

Within its radius of convergence, a power series:

- is continuous.
- is differentiable.
- In the second second

$$f'(z) = \sum_{k=1}^{\infty} k a_k (z - z_0)^{k-1}$$

Corollary

A power series is analytic within its radius of convergence.

Theorem

If C is a contour in the disc of convergence, then

$$\int_{C} \sum_{k=0}^{\infty} a_{k} (z - z_{0})^{k} dz = \sum_{k=0}^{\infty} a_{k} \int_{C} (z - z_{0})^{k} dz$$

MATH 241 Taylor and Laurent Series textbook sections 19.2-19.3

Theorem (Taylor's Theorem)

If f(z) is an analytic function in the domain D, and z_0 is a point of D, then the series representation

$$f(z) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(z_0) (z - z_0)^k$$

is valid on any disc centred at z_0 which lies inside D.

To find the radius of convergence for the Taylor series of f, compute the distance to the nearest point where f is not analytic.

Important Taylor series

$$\exp(z) = \sum_{k=0}^{\infty} \frac{1}{k!} z^k$$
$$\sin(z) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k+1)!} z^{2k+1}$$
$$\cos(z) = \sum_{k=0}^{\infty} (-1)^k \frac{1}{(2k)!} z^{2k}$$

These are valid for all z.

御 と く ヨ と く ヨ と

э

Important Taylor series

$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^k$$

This is valid for |z| < 1.

$$Ln(z) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{1}{k} (z-1)^k$$

This is valid for |z - 1| < 1.

- (同) (目) (日) (1

Definition

A series of the form

$$\sum_{k=-\infty}^{\infty}a_k\,(z-z_0)^k$$

is called the Laurent series with centre z_0 and coefficients $\{a_k\}$.

The analytic part of the Laurent series is

$$\sum_{k=0}^{\infty}a_{k}\left(z-z_{0}\right)^{k}$$

The principal part of the Laurent series is

$$\sum_{k=1}^{\infty} a_{-k} (z - z_0)^{-k} = \sum_{k=1}^{\infty} \frac{a_{-k}}{(z - z_0)^k}$$

We expect a power series to converge on a disc: $|z - z_0| < R$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

We expect a power series to converge on a disc: $|z - z_0| < R$.

The principal part should converge on the exterior of a disc: $r < |z - z_0|$.

MATH 241 Taylor and Laurent Series textbook sections 19.2-19.3

< ∃ >

We expect a power series to converge on a disc: $|z - z_0| < R$.

The principal part should converge on the exterior of a disc: $r < |z - z_0|$.

So a Laurent series converges on an annulus $r < |z - z_0| < R$.

We expect a power series to converge on a disc: $|z - z_0| < R$.

The principal part should converge on the exterior of a disc: $r < |z - z_0|$.

So a Laurent series converges on an annulus $r < |z - z_0| < R$.

Theorem (Laurent's Theorem)

Suppose f(z) is analytic in the annulus $r < |z - z_0| < R$. Then for any z in the annulus, the Laurent series representation is valid:

$$f(z) = \sum_{k=-\infty}^{\infty} a_k \left(z - z_0\right)^k$$

where

$$a_k = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w - z_0)^{k+1}} dw$$

for any contour C which is equivalent to the boundary circles $|z - z_0| = R, |z - z_0| = r.$