Laurent Series, Singularities, and Integration II textbook sections 19.3-19.5

MATH 241

April 17, 2012

MATH 241 Laurent Series, Singularities, and Integration II textbook sections

Definition

The residue of f at the isolated singularity z_0 is the coefficient a_{-1} in its Laurent expansion at z_0 .

- Compute a Laurent series centred at z_0 .
- ٩
- ۲

→ < ∃→

Theorem

If f has a simple pole at z_0 , then

$$\operatorname{Res}(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

・ロト ・回ト ・ヨト ・ヨト

æ

Theorem

If f has a simple pole at z_0 , then

$$\operatorname{Res}(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

If f has a pole of order n at z_0 , then

$$\operatorname{Res}(f; z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left[(z - z_0)^n f(z) \right]$$

伺 ト く ヨ ト く ヨ ト

Theorem

If f has a simple pole at z_0 , then

$$\operatorname{Res}(f; z_0) = \lim_{z \to z_0} (z - z_0) f(z)$$

If f has a pole of order n at z_0 , then

$$\operatorname{Res}(f; z_0) = \frac{1}{(n-1)!} \lim_{z \to z_0} \frac{d^{n-1}}{dz^{n-1}} \left[(z - z_0)^n f(z) \right]$$

Theorem

If f(z) and g(z) are analytic in a neighbourhood of z_0 , g(z) has a simple zero at z_0 and $f(z_0) \neq 0$, then

$$\operatorname{Res}\left(\frac{f}{g}; z_0\right) = \frac{f(z_0)}{g'(z_0)}$$

Theorem (L'Hôpital's Rule)

If the limit

$$\lim_{z\to z_0}\frac{f(z)}{g(z)}$$

has indeterminate form, then

$$\lim_{z\to z_0}\frac{f(z)}{g(z)} = \lim_{z\to z_0}\frac{f'(z)}{g'(z)}$$

MATH 241 Laurent Series, Singularities, and Integration II textbook sections

・聞き ・ ほき・ ・ ほき

3

۲

- Compute a Laurent series centred at z_0 .
- Multiply by $(z z_0)^n$ and take an appropriate limit.

Theorem (Residue Theorem)

If f is a function which is analytic inside a simple closed curve C, except at finitely many isolated singular points $\{z_0, \ldots, z_n\}$, then

$$\oint_C f(z)dz = 2\pi i \sum_{k=0}^n \operatorname{Res}(f; z_k)$$

同 ト イ ヨ ト イ ヨ ト

- Compute a Laurent series centred at z_0 .
- Multiply by $(z z_0)^n$ and take an appropriate limit.
- Use the Residue Theorem.

∰ ▶ ∢ 🖹 ▶

- Compute a Laurent series centred at z₀.
- Multiply by $(z z_0)^n$ and take an appropriate limit.
- Use the Residue Theorem.

Actually

・ 同 ト ・ ヨ ト ・ ヨ ト

- Compute a Laurent series centred at z₀.
- Multiply by $(z z_0)^n$ and take an appropriate limit.
- Use the Residue Theorem.

Actually

We'll primarily use the Residue Theorem in the following way:

- Use the Residue Theorem to write an integral as a sum of residues.
- ② Use the theorems given above to compute each residue.
- Add the residues together to get the value of the integral.