Laurent Series, Singularities, and Integration II textbook sections 19.3-19.5

MATH 241

April 17, 2012

Definition

The residue of f at the isolated singularity z_{0} is the coefficient a_{-1} in its Laurent expansion at z_{0}.

How to compute $\operatorname{Res}\left(f ; z_{0}\right)$:

- Compute a Laurent series centred at z_{0}.
$-$
-

Theorem

If f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

Theorem

If f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

If f has a pole of order n at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left[\left(z-z_{0}\right)^{n} f(z)\right]
$$

Theorem

If f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

If f has a pole of order n at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\frac{1}{(n-1)!} \lim _{z \rightarrow z_{0}} \frac{d^{n-1}}{d z^{n-1}}\left[\left(z-z_{0}\right)^{n} f(z)\right]
$$

Theorem

If $f(z)$ and $g(z)$ are analytic in a neighbourhood of $z_{0}, g(z)$ has a simple zero at z_{0} and $f\left(z_{0}\right) \neq 0$, then

$$
\operatorname{Res}\left(\frac{f}{g} ; z_{0}\right)=\frac{f\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}
$$

Theorem (L'Hôpital's Rule)

If the limit

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}
$$

has indeterminate form, then

$$
\lim _{z \rightarrow z_{0}} \frac{f(z)}{g(z)}=\lim _{z \rightarrow z_{0}} \frac{f^{\prime}(z)}{g^{\prime}(z)}
$$

How to compute $\operatorname{Res}\left(f ; z_{0}\right)$:

- Compute a Laurent series centred at z_{0}.
- Multiply by $\left(z-z_{0}\right)^{n}$ and take an appropriate limit.
-

Theorem (Residue Theorem)

If f is a function which is analytic inside a simple closed curve C, except at finitely many isolated singular points $\left\{z_{0}, \ldots, z_{n}\right\}$, then

$$
\oint_{C} f(z) d z=2 \pi i \sum_{k=0}^{n} \operatorname{Res}\left(f ; z_{k}\right)
$$

How to compute $\operatorname{Res}\left(f ; z_{0}\right)$:

- Compute a Laurent series centred at z_{0}.
- Multiply by $\left(z-z_{0}\right)^{n}$ and take an appropriate limit.
- Use the Residue Theorem.

How to compute $\operatorname{Res}\left(f ; z_{0}\right)$:

- Compute a Laurent series centred at z_{0}.
- Multiply by $\left(z-z_{0}\right)^{n}$ and take an appropriate limit.
- Use the Residue Theorem.

Actually

How to compute $\operatorname{Res}\left(f ; z_{0}\right)$:

- Compute a Laurent series centred at z_{0}.
- Multiply by $\left(z-z_{0}\right)^{n}$ and take an appropriate limit.
- Use the Residue Theorem.

Actually

We'll primarily use the Residue Theorem in the following way:
(1) Use the Residue Theorem to write an integral as a sum of residues.
(2) Use the theorems given above to compute each residue.
(3) Add the residues together to get the value of the integral.

