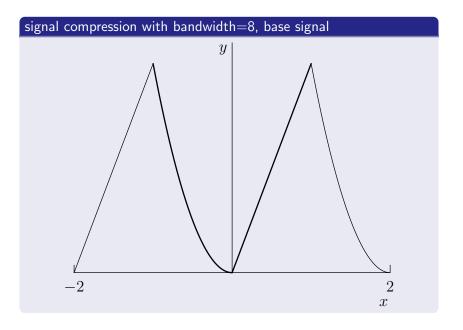
Complex Fourier Series textbook section 12.4

MATH 241

January 19, 2012

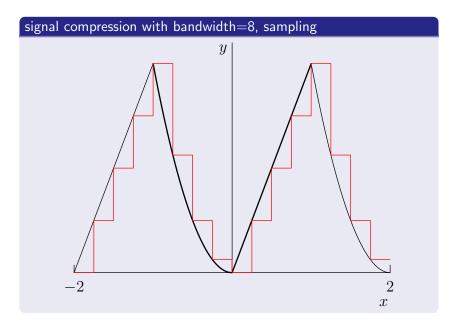
MATH 241 Complex Fourier Seriestextbook section 12.4



MATH 241 Complex Fourier Seriestextbook section 12.4

æ

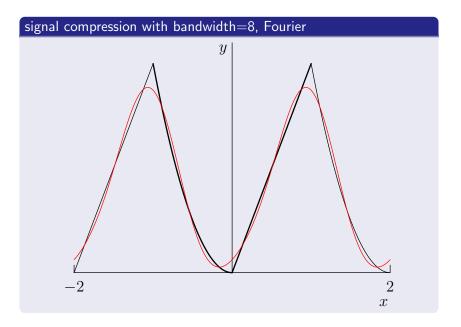
- **→** → **→**



MATH 241 Complex Fourier Seriestextbook section 12.4

æ

- **→** → **→**



æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Note

The frequencies of $\cos\left(\frac{n\pi}{p}x\right)$ and $\sin\left(\frac{n\pi}{p}x\right)$ are the same! (So we can buy the same model oscillator to account for both of them.)

Question

How many of each frequency of oscillator do we need?

MATH 241 Complex Fourier Seriestextbook section 12.4

・ロト ・回ト ・ヨト ・ヨト

æ

• z = a + ib where a, b are real numbers and $i^2 = -1$

MATH 241 Complex Fourier Seriestextbook section 12.4

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

3

- z = a + ib where a, b are real numbers and $i^2 = -1$
- If F(x) is a complex-valued function, we can write F(x) = f(x) + ig(x).

ゆ ト イヨ ト イヨト

э

- z = a + ib where a, b are real numbers and $i^2 = -1$
- If F(x) is a complex-valued function, we can write F(x) = f(x) + ig(x).
- Complex arithmetic: treat everything formally!

- z = a + ib where a, b are real numbers and $i^2 = -1$
- If F(x) is a complex-valued function, we can write F(x) = f(x) + ig(x).
- Complex arithmetic: treat everything formally!

•
$$\int_{-p}^{p} (f(x) + ig(x)) dx = \int_{-p}^{p} f(x) dx + i \int_{-p}^{p} g(x) dx$$

→ < Ξ → <</p>

- z = a + ib where a, b are real numbers and $i^2 = -1$
- If F(x) is a complex-valued function, we can write F(x) = f(x) + ig(x).
- Complex arithmetic: treat everything formally!
- $\int_{-p}^{p} (f(x) + ig(x)) dx = \int_{-p}^{p} f(x) dx + i \int_{-p}^{p} g(x) dx$
- $\overline{z} = a ib$

- z = a + ib where a, b are real numbers and $i^2 = -1$
- If F(x) is a complex-valued function, we can write F(x) = f(x) + ig(x).
- Complex arithmetic: treat everything formally!
- $\int_{-p}^{p} (f(x) + ig(x)) dx = \int_{-p}^{p} f(x) dx + i \int_{-p}^{p} g(x) dx$
- $\overline{z} = a ib$
- $|z| = \sqrt{a^2 + b^2}$

- z = a + ib where a, b are real numbers and $i^2 = -1$
- If F(x) is a complex-valued function, we can write F(x) = f(x) + ig(x).
- Complex arithmetic: treat everything formally!
- $\int_{-p}^{p} (f(x) + ig(x)) dx = \int_{-p}^{p} f(x) dx + i \int_{-p}^{p} g(x) dx$
- $\overline{z} = a ib$

•
$$|z| = \sqrt{a^2 + b^2}$$

•
$$z\overline{z} = |z|^2$$

Euler's Formula

If x is a real number, then

$$e^{ix} = \cos(x) + i\sin(x)$$

Euler's Other Formulae

If x is a real number, then

$$\cos(x) = \frac{1}{2} \left(e^{ix} + e^{-ix} \right)$$
$$\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$$

- ₹ 🖬 🕨

э

Definition

The inner product of two complex-valued functions F(x) and G(x) on the interval [a, b] is:

$$(F,G) = \int_{a}^{b} F(x)\overline{G(x)}dx$$

Complex Fourier Basis

The set

$$\{1, e^{\frac{i\pi}{p}x}, e^{\frac{2i\pi}{p}x}, \dots, e^{-\frac{i\pi}{p}x}, e^{-\frac{2i\pi}{p}x}, \dots\}$$

is orthogonal on [-p, p]. In fact it's a complete orthogonal set for complex-valued functions on [-p, p].

Complex Fourier Coefficients

The complex Fourier series for a function f(x) defined on [-p, p] is

$$\sum_{n=-\infty}^{\infty} c_n e^{\frac{in\pi}{p}x}$$

where

$$c_n = \frac{1}{2p} \int_{-p}^{p} f(x) e^{-\frac{in\pi}{p}x} dx$$

If f(x) is real-valued, the complex Fourier coefficients are related to the real Fourier coefficients.

$$c_0 = \frac{1}{2}a_0$$

$$c_n = \frac{1}{2}(a_n - ib_n)$$

$$c_{-n} = \frac{1}{2}(a_n + ib_n)$$

- ∢ ⊒ →

э

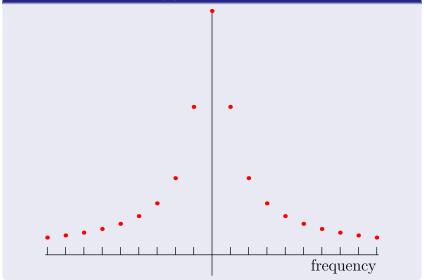
Definition

The frequency spectrum of a periodic function with period T = 2p is the plot of $\left(\frac{n\pi}{p}, |c_n|\right)$.

э

▶ ◀ ☱ ▶

frequency spectrum for $f(x) = e^x, -1 \le x \le 1$

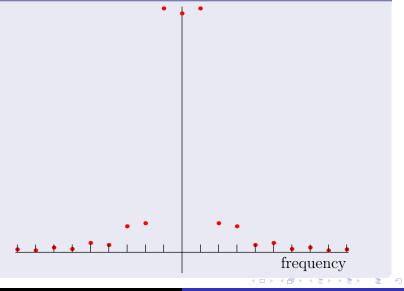


▲ 同 ▶ → 三 ▶

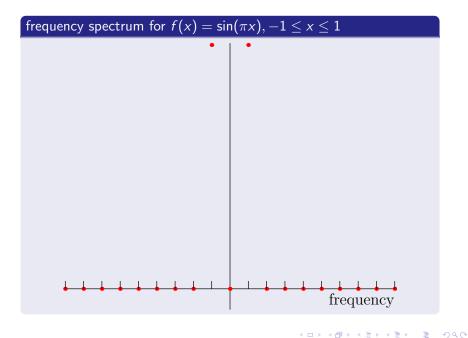
æ

- ₹ 🖬 🕨

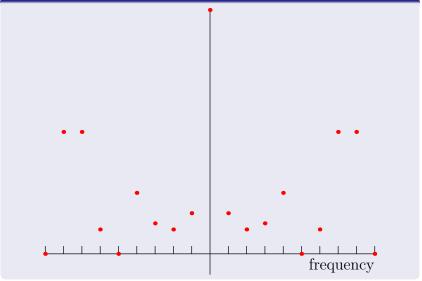
frequency spectrum for $f(x) = \begin{cases} x^2 \\ x \end{cases}$, $-1 \le x \le 1$



MATH 241 Complex Fourier Seriestextbook section 12.4



frequency spectrum

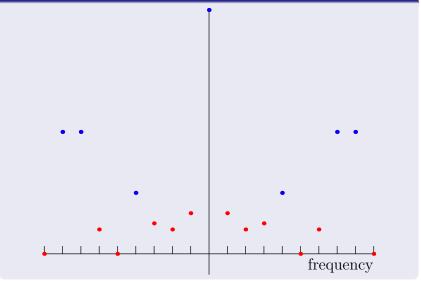


▲ 同 ▶ → 三 ▶

æ

-∢ ≣⇒

frequency spectrum



▲ 同 ▶ → 三 ▶

æ

⊸ ≣ ▶