Sturm-Liouville Problems textbook section 12.5

MATH 241

January 24, 2012

MATH 241 Sturm-Liouville Problemstextbook section 12.5

伺 ト く ヨ ト く ヨ ト

э

The boundary-value problem

$$\begin{cases} y'' + \lambda y &= 0\\ y(0) &= 0\\ y(L) &= 0 \end{cases}$$

is called the Dirichlet eigenvalue problem for $\frac{d^2}{dx^2}$ on [0, L].

Dirichlet eigenvalue problem

- nontrivial solutions only when $\lambda = \left(\frac{n\pi}{L}\right)^2$
- corresponding solutions are $sin\left(\frac{n\pi}{L}x\right)$

Definition

We call $\lambda_n = \left(\frac{n\pi}{L}\right)^2$ an eigenvalue and sin $\left(\frac{n\pi}{L}x\right)$ the corresponding eigenfunction.

The boundary-value problem

$$\begin{cases} y'' + \lambda y &= 0 \\ y'(0) &= 0 \\ y'(L) &= 0 \end{cases}$$

is called the Neumann eigenvalue problem for $\frac{d^2}{dx^2}$ on [0, L].

Neumann eigenvalue problem

- nontrivial solutions only when $\lambda = \left(\frac{n\pi}{L}\right)^2$
- corresponding solutions are $\cos\left(\frac{n\pi}{L}x\right)$

Definition

We call $\lambda_n = \left(\frac{n\pi}{L}\right)^2$ an eigenvalue and $\cos\left(\frac{n\pi}{L}x\right)$ the corresponding eigenfunction.

A boundary-value problem

$$\begin{cases} \frac{d}{dx} (r(x)y') + (q(x) + \lambda p(x)) y &= 0\\ A_1 y(a) + B_1 y'(a) &= 0\\ A_2 y(b) + B_2 y'(b) &= 0 \end{cases}$$

is called a regular Sturm-Liouville problem on [a, b]. We assume that r(x) > 0, p(x) > 0, $\lambda \ge 0$, and at least one of A_1, B_1 and at least one of A_2, B_2 is nonzero.

Definition

If the regular Sturm-Liouville problem with $r, q, p, A_1, A_2, B_1, B_2, \lambda$ has a nontrivial solution, we call λ an eigenvalue and the solution an eigenfunction. Dirichlet problem for $\frac{d^2}{dx^2}$

$$\begin{cases} \frac{d}{dx} (1y') + (0 + \lambda 1) y &= 0\\ 1y(a) + 0y'(a) &= 0\\ 1y(b) + 0y'(b) &= 0 \end{cases}$$

Neumann problem for $\frac{d^2}{dx^2}$

$$\begin{cases} \frac{d}{dx} (1y') + (0 + \lambda 1) y &= 0\\ 0y(a) + 1y'(a) &= 0\\ 0y(b) + 1y'(b) &= 0 \end{cases}$$

< □ > < □ > < □ > = □

Theorem

For any regular Sturm-Liouville problem, we have:

There is one eigenvalue for each natural number n, and if they are arranged in increasing order

$$\lambda_1 < \lambda_2 < \cdots < \lambda_n < \cdots$$

we have $\lambda_n \to \infty$ as $n \to \infty$

- Each eigenvalue has exactly one corresponding eigenfunction (up to scalar multiples).
- Eigenfunctions for distinct eigenvalues are linearly independent.
- The set of eigenfunctions is orthogonal with respect to the weight function p(x).
- Solution The set of eigenfunctions is complete on [0, L].

symmetric $n \times n$ matrix	SLP
eigenvalues $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$	eigenvalues $\lambda_1 < \lambda_2 \cdots$
eigenvectors	eigenfunctions
eigenvectors are orthogonal	eigenfunctions orthogonal wrt p
eigenvectors form a basis	eigenfunctions are complete

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

Theorem

Assume a(x) > 0 and d(x) > 0 on [a, b]. Then the general eigenvalue problem

$$a(x)y'' + b(x)y' + (c(x) + \lambda d(x))y = 0$$

has solutions for $\lambda_1 < \lambda_2 < \cdots \rightarrow \infty$.

Each eigenvalue has one eigenfunction (up to scalar multiples), and the eigenfunctions are a complete orthogonal set on [a, b] with respect to the weight function

$$p(x) = \frac{d(x)}{a(x)} e^{\int \frac{b(x)}{a(x)} dx}$$

The differential equation

$$\frac{d}{dx}(r(x)y') + (q(x) + \lambda p(x))y = 0$$

along with one of the following conditions:

- r(a) = 0 and Ay(b) + By'(b) = 0
- r(b) = 0 and Ay(a) + By'(a) = 0

is called a singular Liouville problem on [a, b].

Definition

The differential equation

$$\frac{d}{dx}(r(x)y') + (q(x) + \lambda p(x))y = 0$$

along with the condition r(a) = r(b), y(a) = y(b), y'(a) = y'(b) is called a periodic Liouville problem on [a, b].

Theorem

Suppose $\lambda \neq \mu$, and ϕ, ψ are corresponding solutions of a singular Liouville problem. Then ϕ and ψ are orthogonal with respect to p(x).

Theorem

Suppose $\lambda \neq \mu$, and ϕ, ψ are corresponding solutions of a periodic Liouville problem. Then ϕ and ψ are orthogonal with respect to p(x).

Note

The other properties of regular Sturm-Liouville problems may not apply to singular and periodic Sturm-Liouville problems!