MATH 241 Practice Exam 1

This exam consists of 6 multiple-choice questions, 3 true-false questions, and one open-ended question. Show all your work. You will receive credit for a correct answer only if your work is shown and your work supports your answer. No credit will be given for correct answers which are not supported by work.

You will have 80 minutes to complete this exam.
$J_{n}(x)$ is the n-th Bessel function of the first kind; $j_{n, i}$ is the i th positive zero of J_{n}.

1. All solutions of the boundary value problem

$$
\begin{cases}\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial t^{2}} & =u \\ u(0, t) & =0 \\ u(\pi, t) & =0\end{cases}
$$

which have the form $u(x, t)=X(x) T(t)$ are linear combinations of: A. $e^{\left(n^{2}+1\right) t} \sin (n x), n>0 \quad$ B. $e^{-(n+1)^{2} t} \sin (n x), n>0$
C. $\sin (n x) \sinh \left(\sqrt{n^{2}+1} t\right), \sin (n x) \cosh \left(\sqrt{n^{2}+1} t\right), n>0$
D. $\sin \left(\sqrt{n^{2}+1} t\right) \sin (n x), \cos \left(\sqrt{n^{2}+1} t\right) \sin (n x), n>0$
E. $e^{(1+n)^{2} t} \cos (n x), n \geq 0$
F. $\cos (n x) \sin \left(\sqrt{n^{2}+1} t\right), \sin (n x) \cos \left(\sqrt{n^{2}+1} t\right), n \geq 0$
2. Let $f(x)=\sin ^{3}(2 x)$. Which of the following could be the frequency spectrum of f on $[-\pi, \pi]$?

3. Find the product of the first three eigenvalues of the Sturm-Liouville problem

$$
\begin{cases}y^{\prime \prime}+\lambda y & =0 \\ y^{\prime}(0)=y^{\prime}(5) & =0\end{cases}
$$

A. 1
B. $\frac{6 \pi^{3}}{125}$
C. $\frac{2 \pi^{3}}{125}$
D. $\frac{6 \pi^{2}}{25}$
E. $\frac{2 \pi^{2}}{25}$
F. 0
4. Expand $f(x)=x^{4}$ in the $n=4$ Dirichlet Bessel series on $[0,1]$.
A. $\sum_{i=1}^{\infty} \frac{2}{j_{4, i}^{2} J_{5}\left(j_{4, i}\right)^{2}} J_{5}\left(j_{4, i} x\right)$
B. $\sum_{i=1}^{\infty} \frac{2}{j_{5, i}^{2} J_{5}\left(j_{5, i}\right)} J_{4}\left(j_{5, i} x\right)$
C. $\sum_{i=1}^{\infty} \frac{2}{j_{4, i} J_{5}\left(j_{4, i}\right)} J_{4}\left(j_{4, i} x\right)$
D. $\sum_{i=0}^{\infty} \frac{2}{J_{5}\left(j_{4, i}\right)^{2}} J_{4}\left(j_{4, i} x\right)$
E. $\sum_{i=1}^{\infty} \frac{2}{j_{5, i} J_{5}\left(j_{5, i}\right)} J_{4}\left(j_{4, i} x\right)$
F. $\sum_{i=1}^{\infty} \frac{2}{j_{4, i}^{2} J_{5}\left(j_{4, i}\right)} J_{4}\left(j_{4, i} x\right)$
5. Circle all of following which are true of the Fourier series on $[-2,2]$ for

$$
f(x)= \begin{cases}1+x^{2} & 0<x<2 \\ 1-x^{2} & -2<x<0\end{cases}
$$

A. $a_{0}=2$ and the other a_{n} are all zero. \quad B. a_{n} is negative if n is even C. a_{n} is positive if n is odd D . the b_{n} are all zero.
E. b_{n} is negative if n is even \quad F. b_{n} is positive if n is odd
6. Let c_{n} be the complex Fourier coefficient for $f(x)=1+x$ on $[-2,2]$. Find the sum $c_{0}+c_{1}+c_{2}$.
A. $1-\frac{2}{\pi}+\frac{1}{\pi}$
B. $1-\frac{1}{\pi} i$
C. $-\frac{1}{2 \pi}$
D. 0
E. $1+\frac{3}{2 \pi} i$
F. $-\frac{1}{2 \pi} i$
7. TRUE or FALSE. For each of the following statements, indicate whether it is always true (T) or sometimes false (F). Support your answers.
i The square of any function is an even function.
ii Let $f(x)$ be a continuous function defined on $[0, L]$ such that $f(L)=0$. If we reflect the function in an odd way, to $[-L, L]$ and compute its sine series

$$
\sum_{k=1}^{\infty} b_{k} \sin \left(\frac{k \pi}{L} x\right)
$$

then the series converges to $f(x)$ for all x in $[0, L]$.
iii The boundary value problem

$$
\begin{cases}x^{2} y^{\prime \prime}+2 x y^{\prime}+x \lambda y & =0 \\ y(1)=y(2) & =0\end{cases}
$$

is a regular Sturm-Liouville problem.
8. A string of length 2π is vibrating according to:

$$
\begin{aligned}
u(0, t)=u(2 \pi, t) & =0 \\
u(x, 0) & =\sin ^{2}(x) \\
\frac{\partial u}{\partial t}(x, 0) & =0
\end{aligned}
$$

Show that, for any $x, u(x, \pi)=0$. Interpret this statement physically.

