## MATH 241 Practice Exam 2

This exam consists of 5 multiple-choice questions, 2 true-false questions, and 2 open-ended questions. Show all your work. You will receive credit for a correct answer only if your work is shown and your work supports your answer. No credit will be given for correct answers which are not supported by work.

You will have 80 minutes to complete this exam.

1. Heat is diffusing in a semi-infinite rod. One end of the rod is insulated. The initial temperature distribution is given by

$$
u(x, 0)= \begin{cases}1 & 0<x<1 \\ e^{-x+1} & x \geq 1\end{cases}
$$

Find $u(x, t)$.
A. $u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \alpha}{\alpha} e^{-\alpha^{2} t} \sin (\alpha x) d \alpha$
B. $u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha \sin \alpha-\cos \alpha}{1+\alpha^{2}} e^{-\alpha^{2} t} \sin (\alpha x) d \alpha$
C. $u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha}{1+\alpha^{2}} \sinh (\alpha t) \cos (\alpha x) d \alpha$
D. $u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha}{1+\alpha^{2}} e^{-\alpha^{2} t} \cos (\alpha x) d \alpha$
E. $u(x, t)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \alpha-\cos \alpha}{1+\alpha^{2}} \cosh (\alpha t) \sin (\alpha x) d \alpha$
F. $u(x, t)=\frac{2}{\pi} \int_{0}^{\infty}\left(\frac{\sin \alpha}{\alpha}+\frac{\cos \alpha-\alpha \sin \alpha}{1+\alpha^{2}}\right) e^{-\alpha^{2} t} \cos (\alpha x) d \alpha$
2. Which of the following shaded sets are regions?
A.

B.

C.

D.


3. Solve the following Laplace's equation problem in the first quadrant:

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \\
u_{x}(0, y)=0 \\
u(x, 0)= \begin{cases}0 & 0<x<1 \\
1 & 1 \leq x<2 \\
0 & x \geq 2\end{cases}
\end{array}\right.
$$

Assume the solution has $u(x, y)$ bounded as $y \rightarrow \infty$.
A. $u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin (2 \alpha)}{\alpha} e^{-\alpha y} \sin (\alpha x) d \alpha \quad$ B. $u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha^{2}}{1+\alpha^{2}} e^{-\alpha y} \cos (\alpha x) d \alpha$
C. $u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin (2 \alpha)-\sin \alpha}{\alpha} e^{-\alpha y} \cos (\alpha x) d \alpha$
D. $u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\alpha \cos (2 \alpha)-\sin \alpha}{\alpha} e^{\alpha y} \cos (\alpha x) d \alpha$
E. $u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin \alpha}{1+\alpha^{2}} \sinh (\alpha y) \sin (\alpha x) d \alpha \quad$ F. $u(x, y)=\frac{2}{\pi} \int_{0}^{\infty} \alpha^{2} \cosh (\alpha y) \cos (\alpha x) d \alpha$
4. A circular plate of radius 2 is at thermal equilibrium. Along its edge, the temperature is given by $\sin ^{2} \theta+\sin \theta$. Find the temperature at the point $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.
A. 1
B. 0
C. $\frac{1}{2}$
D. $-\frac{1}{2}$
E. $\frac{1}{2}+\frac{\sqrt{2}}{4}$
F. $\sqrt{2}$
5. Circle all of the numbers $z$ below with the property that two fifth roots of $z$ lie in the first quadrant.
A. 1
B. -1
C. $i$
D. $-i$
E. $\frac{\sqrt{2}}{2}+i \frac{\sqrt{2}}{2}$
6. An semi-infinite string vibrates according to

$$
\begin{cases}\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}} & x>0, t>0 \\ u(x, 0)=0, \frac{\partial u}{\partial t}(x, 0)=e^{-x} & \\ \frac{\partial u}{\partial x}(0, t)=0 & \end{cases}
$$

Find $u(x, t)$.
7. TRUE or FALSE. For each of the following statements, indicate whether it is true (T) or false (F). Support your answers.
i The principal $n^{\text {th }}$ root of a complex number always lies in the first quadrant.
ii The function $f(z)=\frac{\mathfrak{R c}(z)}{\mathfrak{J m}(z)}$ has a limit at $z=0$.
8. In a short paragraph, explain the humour in the following voicemail message:

Hello. You have reached an imaginary number. Please hang up, rotate your phone ninety degrees, and try calling back.

