Math 114 HW 1

due Wednesday, 5/25

1. Find the radius of the sphere : $x^{2}+y^{2}+z^{2}-2 x-4 y-10 z=19$
2. For the pair of vectors \mathbf{v} and \mathbf{w}, where $\mathbf{v}=\hat{\mathbf{i}}-\hat{\mathbf{k}}$ and $\mathbf{w}=\hat{\mathbf{j}}+\hat{\mathbf{k}}$, find the angle θ between \mathbf{v} and \mathbf{w}.
3. An insect in the X-Y plane crawls 50 units along the positive direction of the x axis and then crawls 70 units in a direction that is at an angle of 60 degrees (counterclockwise) from the X- axis. Find the vector that gives the final position of the insect.
4. (Fall 2008) Which of the following equations in x and y is equivalent to the statement that the vectors

$$
A=\langle x+y, 1, y\rangle \text { and } B=\langle 1, x-y,-1\rangle
$$

are perpendicular to each other?
(a) $2 x-y=0$
(b) $x-2 y=0$
(c) $x-y=0$
(d) $2 x+y=0$
(e) $x+2 y=0$
(f) None of the above
5. Find the area of the parallelogram whose vertices are P_{1}, P_{2}, P_{3} and P_{4}.

$$
P_{1}=(0,0,0) ; \quad P_{2}=(1,2,4) ; \quad P_{3}=(3,1,6) ; \quad P_{4}=(2,-1,2)
$$

6. (Spring 2011) The set of points equidistant from the points $(2,-1,1)$ and $(4,3,-5)$ is a plane. What is the equation of this plane?
7. (Fall 2011) Let L be the line through the origin that is perpendicular to the plane $2 x+y+z=7$. Find the distance between the point $(-4,3,5)$ and L.
8. (Fall 2008) Let $\mathbf{v}=\langle 0,7,0\rangle$ and let \mathbf{u} be a vector of length 5 which starts at the origin and lies in the X-Y plane. Find the maximum value of the length of the vector $|\mathbf{u} \times \mathbf{v}|$.
