Math 114 HW 5

due Thursday, 6/9

1. (Fall 2009) Suppose $z=f(x, y)$, where $x=g(s, t), y=h(s, t)$. Suppose we know that $g(1,2)=3, \quad g_{s}(1,2)=-1, \quad g_{t}(1,2)=4$, $h(1,2)=6, \quad h_{s}(1,2)=-5, \quad h_{t}(1,2)=10$, $f_{x}(3,6)=7, \quad f_{y}(3,6)=8$,
Find $\frac{\partial z}{\partial s}+\frac{\partial z}{\partial t}$ when $s=1$ and $t=2$.
Hint : Use the chain rule.
(a) 60
6 (b) -60
(c) 61 (d) -61
(e) 62 (f) -62
2. Let $T(x, y)=x^{2}+y^{2}-x-y$ be the temperature at the point (x, y) in the plane. A lizard sitting at the point $(1,3)$ wants to increase his surrounding temperature as quickly as possible. In which direction should he move?
(a) $\langle 1,1\rangle$ (b) $\langle 1,3\rangle$
(c) $\langle 1,5\rangle$
(d) $\langle 1,7\rangle$
(e) He should stay still.
(f) none of the above
3. (Fall 2010) Let $f(x, y, z)=z x-x y^{2}$. At the point $(1,1,1)$, find the angle between the vector pointing in the direction of fastest increase of $f(x, y, z)$ and the x -axis.
(a) -1 (b) $\frac{-1}{2}$
(c) 0
0 (d) $\frac{\pi}{6}$
(e) $\frac{\pi}{4}$
(f) $\frac{\pi}{3}(\mathrm{~g}) \frac{\pi}{2}$
4. (Spring 2008) Let f be the function $f(x, y)=\ln (x+y)$ for $x+y>0$. What is the maximum value of the directional derivative $D_{u}(f)$ of f at the point $(x, y)=(2,-1)$ as u ranges over all unit vectors in the $\mathrm{x}-\mathrm{y}$ plane?
(a) 1
1 (b) $\frac{1}{2}$ (c) $\sqrt{2}$
(d) $\sqrt{3}$
(e) $\ln (2)$
(f) 0 (g) none of the above
5. (Spring 2008) Find the equation of the tangent plane to the surface

$$
4 x^{4}+2 y^{4}+z^{4}=22
$$

at the point $(1,1,2)$.
6. (Fall 2010) Consider the surface $z=x^{2}+x+2 y^{2}$. At what point $\left(x_{0}, y_{0}, z_{0}\right)$ is the tangent plane parallel to the plane $x+4 y+z=0$?
7. (Fall 2011) Find the equation of the plane that is tangent to the surface

$$
\cos (y+x)-\sin (y+z)=\sin (z)-\cos (z)
$$

at the point $(\pi, \pi, 0)$. What is the y-coordinate of the point where this tangent plane intersects the y-axis?
8. (Spring 2009) The function $f(x, y)=x^{4}+y^{4}-4 x y+1$ has how many local minima?
9. (Spring 2010) Consider the function $f(x, y)=-2 x^{3}+3 x^{2}+2 y^{2}-4 y$. Find the two critical points and determine their type (maxima/ minima/ saddle point).
10. (Spring 2013) Let $f(x, y)=x^{3}-3 x y+y^{2}$. Find the local minimum of f.

