Math 114 HW 7

due Wednesday, 6/15

1. Sketch the region in the $x-y$ plane bounded by the parabola $x=-y^{2}$ and the line $y=x+2$. Then compute the area of this region.
2. Sketch the region in the $x-y$ plane bounded by the curve $y=e^{x}$ and the lines $y=0, x=0$, and $x=\ln 2$. Then compute the area of this region.
3. Evaluate the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d y d x
$$

Hint : Switch to polar coordinates.
4. (Spring 2009) What is the area of the region in the plane bounded by the curve given in polar coordinates by : $r=4+2 \cos (2 \theta)$?
5. (Fall 2010) Find the area enclosed by the curve given in polar coordinates by $r(\theta)=4+\sin \theta+\cos \theta$ with $0 \leq \theta \leq 2 \pi$.
6. (Fall 2013) Compute the volume of the solid bounded by the planes $x+y+z=6$, $x=0, z=0, y=x$.
7. Find the volume of the region in the first octant bounded by the coordinate planes and the surface $z=4-x^{2}-y$. (See Problem 30, page 914 of the textbook for a picture.)
8. Find the volume of the region cut from the cylinder $x^{2}+y^{2}=4$ by the plane $z=0$ and the plane $x+z=3$. (See Problem 32, page 914 of the textbook for a picture.)
9. Evaluate the following triple integrals :
(a) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$
(b) $\int_{1}^{e} \int_{1}^{e^{2}} \int_{1}^{e^{3}} \frac{1}{x y z} d x d y d z$
10. Find the volume of the region in the first octant bounded by the coordinate planes and the planes $x+z=1, y+2 z=2$. (See Problem 24, page 913 of the textbook for a picture.)

