Math 114 HW 8

due Wednesday, $6 / 22$

1. Compute the line integral of the function $f(x, y, z)=x y+y z+x^{2}+2$ along the straight line path C that goes from the point $(1,3,4)$ to the point $(-1,2,1)$.
2. (This is the problem discussed in class, with f possibly changed.) Compute the line integral of the function $f(x, y, z)=x+y+z$ along the path C which goes first from the point $(1,0,0)$ to the point $(0,1,0)$ in a circular arc along $x^{2}+y^{2}=1$ in the first quadrant of the x-y plane and then goes from $(0,1,0)$ to $(0,0,1)$ in a circular arc along $y^{2}+z^{2}=1$ in the first quadrant of the $y-z$ plane.
3. (Fall 2010) Evaluate $\int_{C} x^{2} d x+y^{2} d y+z^{2} d z$ where C is the straight line segment from $(1,2,3)$ to $(2,3,4)$.
4. (Fall 2013) Find the work done by the force field

$$
\vec{F}(x, y)=e^{y} \sin (x) \hat{\mathbf{i}}-\left(e^{y} \cos (x)-\sqrt{1+y}\right) \hat{\mathbf{j}}
$$

in moving a particle from $\left(-\pi, \pi^{2}\right)$ to $\left(\pi, \pi^{2}\right)$ along the parabola $y=x^{2}$.
5. (Optional problem for extra credit) (Spring 2014) Let \vec{F} be the vector field

$$
\vec{F}=\left\langle y^{2}+2 x e^{y}+1,2 x y+x^{2} e^{y}+2 y\right\rangle .
$$

Compute the work integral $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the path

$$
\vec{r}(t)=\sin t \hat{\mathbf{i}}+\cos t \hat{\mathbf{j}}, \quad 0 \leq t \leq \frac{\pi}{2}
$$

6. Compute the flux of the field $\vec{F}=4 y \hat{\mathbf{i}}+3 x \hat{\mathbf{j}}$ across the circle $\vec{r}(t)=\cos t \hat{\mathbf{i}}+\sin t \hat{\mathbf{j}}$.
7. Suppose \vec{F} is the gradient field of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}+x y z$. Without actually computing an integral, find the work done by \vec{F} in moving an object along the straight line from $(1,1,1)$ to $(2,2,3)$.
8. Which of the following fields are conservative?
(a) $y z \hat{\mathbf{i}}+x z \hat{\mathbf{j}}+x y \hat{\mathbf{k}}$
(b) $-y \hat{\mathbf{i}}+x \hat{\mathbf{j}}$
9. Find a potential function for the following fields :
(a) $\vec{F}=5 x \hat{\mathbf{i}}+2 y \hat{\mathbf{j}}+z \hat{\mathbf{k}}$
(b) $\vec{F}=(y \sin z) \hat{\mathbf{i}}+(x \sin z) \hat{\mathbf{j}}+(x y \cos z) \hat{\mathbf{k}}$
10. Evaluate the integral

$$
\int_{C}(y+z) d x+(x+z) d y+(x+y) d z
$$

over any path C between the points $(1,1,1)$ and $(3,2,-1)$, by finding a suitable potential function.

