Math 114 HW 9

due Monday, 6/27

1. (Spring 2011) Evaluate

$$
\int_{C} x y^{3} d x+3 x^{2} y^{2} d y
$$

where C is the boundary of the region in the first quadrant enclosed by the x-axis, the line $x=1$ and the curve $y=x^{3}$, traversed counter-clockwise.
2. (Fall 2010) Find the value of the line integral $I=\int_{C}\left(x^{2}+y\right) d x+\left(y^{2}-x\right) d y$ where C is the triangle with vertices $(x, y)=(0,0),(3,0),(0,4)$ traversed counterclockwise.
3. (Fall 2011) Evaluate the integral

$$
\int_{C}\left(y+\sin \left(e^{x^{2}}\right)\right) d x-2 x d y
$$

where C is the circle $x^{2}+y^{2}=1$ traversed counterclockwise.
4. Use Green's theorem to evaluate the integral

$$
\oint_{C}(3 y d x+2 x d y)
$$

where C is the boundary of $0 \leq x \leq \pi, 0 \leq y \leq \sin x$.
5. (Fall 2013) Use Green's theorem to evaluate the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ where

$$
\vec{F}=\left(e^{y^{2}}-2 y\right) \hat{\mathbf{i}}+\left(2 x y e^{y^{2}}+\sin \left(y^{2}\right)\right) \hat{\mathbf{j}}
$$

and C goes along a straight line from $(0,0)$ to $(1,2)$ and continues along a straight line to $(3,0)$.
6. (Fall 2003) Find the surface area of that portion of the paraboloid $z=4-x^{2}-y^{2}$ that is above the plane $z=1$.
7. Find the surface area of the portion of the paraboloid $y=x^{2}+z^{2}$ that is between the planes $y=1$ and $y=4$.
8. The rectangular coordinate equation $z=\sqrt{x^{2}+y^{2}}$ represents the cone $\phi=\frac{\pi}{4}$. Find the area of the surface cut from the hemisphere $x^{2}+y^{2}+z^{2}=2, z \geq 0$ by the cone $z=\sqrt{x^{2}+y^{2}}$.
9. Let S be the part of the paraboloid $z=17-x^{2}-y^{2}$ lying above the plane $z=1$, oriented with normal vector pointing downward. Compute the flux of $\nabla \times \vec{F}$ across S, where \vec{F} is the vector field $\vec{F}=\left\langle-y z, x z^{2}, x y z\right\rangle$.
Hint: Use Stokes' theorem.
10. Let C be the curve which is the boundary of the square $1 \leq x \leq 2,2 \leq y \leq 3$. Use the surface integral in Stokes' theorem to calculate the line integral of the vector field $\vec{F}=\left(y^{2}+z^{2}\right) \hat{\mathbf{i}}+\left(x^{2}+y^{2}\right) \hat{\mathbf{j}}+\left(x^{2}+y^{2}\right) \hat{\mathbf{k}}$ over the curve C traversed counterclockwise when viewed from above.

