Math 114 HW 9

due Monday, 6/27

1. (Spring 2011) Evaluate

$$\int_C xy^3 dx + 3x^2 y^2 dy$$

where C is the boundary of the region in the first quadrant enclosed by the x-axis, the line x = 1 and the curve $y = x^3$, traversed counter-clockwise.

- 2. (Fall 2010) Find the value of the line integral $I = \int_C (x^2+y)dx + (y^2-x)dy$ where C is the triangle with vertices (x, y) = (0, 0), (3, 0), (0, 4) traversed counterclockwise.
- 3. (Fall 2011) Evaluate the integral

$$\int_C \left(y + \sin\left(e^{x^2}\right) \right) dx - 2xdy,$$

where C is the circle $x^2 + y^2 = 1$ traversed counterclockwise.

4. Use Green's theorem to evaluate the integral

$$\oint_C (3ydx + 2xdy)$$

where C is the boundary of $0 \le x \le \pi$, $0 \le y \le \sin x$.

5. (Fall 2013) Use Green's theorem to evaluate the line integral $\int \vec{F} \cdot d\vec{r}$ where

$$\vec{F} = \left(e^{y^2} - 2y\right)\hat{\mathbf{i}} + \left(2xye^{y^2} + \sin(y^2)\right)\hat{\mathbf{j}}$$

and C goes along a straight line from (0,0) to (1,2) and continues along a straight line to (3,0).

- 6. (Fall 2003) Find the surface area of that portion of the paraboloid $z = 4 x^2 y^2$ that is above the plane z = 1.
- 7. Find the surface area of the portion of the paraboloid $y = x^2 + z^2$ that is between the planes y = 1 and y = 4.
- 8. The rectangular coordinate equation $z = \sqrt{x^2 + y^2}$ represents the cone $\phi = \frac{\pi}{4}$. Find the area of the surface cut from the hemisphere $x^2 + y^2 + z^2 = 2$, $z \ge 0$ by the cone $z = \sqrt{x^2 + y^2}$.
- 9. Let S be the part of the paraboloid $z = 17 x^2 y^2$ lying above the plane z = 1, oriented with normal vector pointing downward. Compute the flux of $\nabla \times \vec{F}$ across S, where \vec{F} is the vector field $\vec{F} = \langle -yz, xz^2, xyz \rangle$. Hint : Use Stokes' theorem.

10. Let *C* be the curve which is the boundary of the square $1 \le x \le 2, 2 \le y \le 3$. Use the surface integral in Stokes' theorem to calculate the line integral of the vector field $\vec{F} = (y^2 + z^2)\hat{\mathbf{i}} + (x^2 + y^2)\hat{\mathbf{j}} + (x^2 + y^2)\hat{\mathbf{k}}$ over the curve *C* traversed counterclockwise when viewed from above.