## Math 114 Practice Questions for Midterm 1

1. Find the radius of the sphere $3 x^{2}+3 y^{2}+3 z^{2}-12 x+6 y+18 z-33=0$.
2. Let $\overrightarrow{(u)}=3 a \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+10 \hat{\mathbf{k}}$ and let $\vec{v}=14 \hat{\mathbf{i}}+b \hat{\mathbf{j}}+5 \hat{\mathbf{k}}$. Find values of $a$ and $b$ so that $\vec{u}$ and $\vec{v}$ are parallel.
3. Let $\vec{v}$ and $\vec{w}$ be two unit vectors and let $\theta$ be the angle between them. Find $\left|\frac{1}{2} \vec{v}-\vec{w}\right|$ in terms of $\theta$.
Hint : Use the dot product.
4. For a pair of vectors $\vec{u}=u_{1} \hat{\mathbf{i}}+u_{2} \hat{\mathbf{j}}+u_{3} \hat{\mathbf{k}}$ and $\vec{v}=v_{1} \hat{\mathbf{i}}+v_{2} \hat{\mathbf{j}}+v_{3} \hat{\mathbf{k}}$, find the components of the vector $\vec{u} \times \operatorname{proj}_{\vec{u}} \vec{v}$. Can you find the answer without explicitly computing out the cross product? Explain your answer.
5. Let L be the line that passes through the point $P(10,2,1)$, lies in the plane $2 x+5 y-z=29$, and is perpendicular to the line

$$
\begin{aligned}
& \mathrm{x}=7-2 \mathrm{t} \\
& \mathrm{y}=4+2 \mathrm{t} \\
& \mathrm{z}=5+6 \mathrm{t} .
\end{aligned}
$$

Find the distance of $L$ from the point $S(5,2,-1)$.
6. Find the distance between the planes $x-2 y+2 z=7$ and $x-2 y+2 z=23$.
7. Find the point on the line

$$
\begin{aligned}
& \mathrm{x}=2-2 \mathrm{t} \\
& \mathrm{y}=-2+1 \mathrm{t} \\
& \mathrm{z}=5+2 \mathrm{t}
\end{aligned}
$$

which is at a distance of 5 units from $(2,-2,5)$.
8. For the curve given by

$$
\vec{r}(t)=\cos t \hat{\mathbf{i}}+\tan t \hat{\mathbf{j}}+\frac{5}{\pi} t^{2} \hat{\mathbf{k}},
$$

find the parametric equations of the line tangent to the curve at the point $\left(\frac{1}{2}, \sqrt{3}, \frac{5 \pi}{9}\right)$.
9. A particle moves with acceleration $\vec{a}(t)=2 t \hat{\mathbf{i}}+3 t^{3} \hat{\mathbf{j}}+\frac{2}{t^{2}} \hat{\mathbf{k}}$. If its velocity at time $t=2$ was $2 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-\hat{\mathbf{k}}$ and its position at time $t=1$ was $\hat{\mathbf{i}}+3 \hat{\mathbf{k}}$, find the coordinates of the position of the particle at time $t=2$.
10. A projectile is fired from the ground at a velocity of $40 \mathrm{~m} / \mathrm{s}$. What is the minimum launch angle so that the projectile can get to the other side of a 60 m high wall?
11. Find the unit tangent vector to the curve $\vec{r}(t)=\sin \left(t^{2}\right) \hat{\mathbf{i}}+\cos \left(t^{2}\right) \hat{\mathbf{j}}+t^{2} \hat{\mathbf{k}}$ at the point $(0,-1, \pi)$.
12. Find the length of the curve $\vec{r}(t)=e^{2 t} \hat{\mathbf{i}}-e^{-2 t} \hat{\mathbf{j}}+2 \sqrt{2} t \hat{\mathbf{k}}$ between the points $(1,1,0)$ and $\left(e^{2}, e^{-2}, 2 \sqrt{2}\right)$.
13. Find the curvature and unit normal vector of the curve $\vec{r}(t)=(3 t-1) \hat{\mathbf{i}}+2 \cos 2 t \hat{\mathbf{j}}+$ $2 \sin 2 t \hat{\mathbf{k}}$ at the point corresponding to $t=\frac{\pi}{8}$.
14. Which of the following limits exist?
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} \sqrt{y}-2 x^{2} y+y^{\frac{3}{2}}}{\sqrt{y}-x^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$, where $f$ is the function defined by : $f(x, y)=$ $\begin{cases}\frac{x^{3}+y^{3}}{x y} & \text { if } x \neq 0 \text { and } y \neq 0 \\ 0 & \text { if } x=0 \text { or } y=0\end{cases}$

