Math 114 Practice Questions for Midterm 2

1. For each of the following functions f, find $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y y}$.
(a) $f(x, y)=e^{2 x+3 y+1}$
(b) $f(x, y)=e^{\frac{y}{x}}+x y+y^{2}$
(c) $f(x, y)=\ln (x y)+\cos \left(x^{3}+3 x y\right)+\sqrt{x^{2}+y^{2}}$
2. If $z=\cos (x y)+x y^{2}, x=u+v^{2}$, and $y=u v$, then find the value of $\frac{\partial z}{\partial u}$ when $u=1$ and $v=1$.
3. Find the directional derivative of the function $g(x, y, z)=x^{2}+3 y^{2}+5 z^{2}$ at the point $(1,2,-1)$ in the direction of the vector $\vec{v}=2 \hat{\mathbf{i}}-2 \hat{\mathbf{j}}+\hat{\mathbf{k}}$.
4. Let $f(x, y)=x^{2}+5 x y+y^{3}$. At the point $(-2,1)$, find the directions \vec{u} (unit vectors) in which $D_{\vec{u}} f$ is largest and smallest.
5. In what directions is the directional derivative of $f(x, y)=\frac{1}{x^{2}+y^{2}}$ at point $(1,-1)$ equal to zero?
6. Find the equations of the tangent plane and normal line to the surface $x^{2}+x y+$ $y^{2}-y z+z^{2}=13$ at the point $(2,1,3)$.
7. For the sphere of radius 2 centered at ($1,3,-2$), find the point(s) on it where the tangent plane is parallel to the plane $x+y=5$.
8. For the function $f(x, y)=x^{4}+y^{4}+4 x y$, find all critical points and classify them as points of local maximum, minimum and saddle points.
9. Find and identify all critical points of $g(x, y)=\frac{1}{x}+x y+\frac{1}{y}$.
10. Find the absolute maximum and minimum of $f(x, y)=3 x-y+7$ on the disk $x^{2}+y^{2} \leq 4$.
11. Find the maximum volume of a rectangular (solid) box of side lengths a, b and c under the constraint that $a+b^{2}+c \leq 25$.

For the chapter on Multiple Integrals it would be helpful to do the following problem numbers from the textbook.
12. Section 15.1: 8, 16, 21
13. Section $15.2: 37,42,45,50,52$
14. Section 15.3: 4, 8, 9, 11, 12
15. Section 15.4 : 11, 12, 17, 20
16. Section 15.5 : 15, 21, 26, 27
17. Section 15.7 : 14, 34, 38, 43
18. Section 15.8 : 1, 2, 6, 9, 10

